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Probability Space

A probability space is a triplet (Ω,F , P):

• Ω, sample space: A set of all possible outcomes.

• A set of some outcomes, as a subset of Ω, is called an event.

• F , σ-algebra (or σ-field): A set of events, i.e., a set of some
subsets of Ω, such that:

1 Ω ∈ F ;
2 Closed under complementation: If A ∈ F , then Ac ∈ F ;
3 Closed under countable unions:† If Ai ∈ F , i = 1, 2, . . ., is a

countable sequence of sets, then ∪∞i=1Ai ∈ F .

• P : F → [0, 1], probability function (or probability measure):
A function that assigns probabilities to events, such that:

1 P(A) ∈ [0, 1] for any A ∈ F ;
2 P(Ω) = 1;
3 Countably additive: If Ai ∈ F , i = 1, 2, . . ., is a countable

sequence of disjoint sets, then P(∪∞i=1Ai) =
∑∞
i=1 P(Ai).

†
It implies that F is also closed under countable intersections.
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Probability Space

• Example 1: Flip a fair coin.
• Ω = {H (head), T (tail)};
• F = {∅, {H}, {T}, Ω};
• P(∅) = 0, P({H}) = 1/2, P({T}) = 1/2, and P(Ω) = 1.

• Example 2: Draw a ball out of 3 balls (red, green, blue).
• Ω = {R (red), G (green), B (blue)};
• F = {∅, {R}, {G}, {B}, {R,G}, {R,B}, {G,B}, Ω};
• P(∅) = 0, P({R}) = P({G}) = P({B}) = 1/3,
P({R,G}) = P({R,B}) = P({G,B}) = 2/3, and P(Ω) = 1;

• F1 = {∅, {R}, {G,B}, Ω}, F2 = {∅, {G}, {R,B}, Ω}...

• Example 3: Randomly “draw” a number in [0, 1]
• Ω = [0, 1];
• F1 = {∅, [0, a), [a, 1], Ω}, F2 = {∅, (0, a), {0} ∪ [a, 1], Ω}...
• A more practical and interesting F is the one that contains all

intervals (no matter open or closed) on [0, 1].
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Probability Space

• Independence of Events: Two events A and B in F are
called statistically independent events when

P(A ∩B) = P(A)P(B).

• Conditional Probability: If A and B are events in F and
P(B) > 0, then the conditional probability of A given B,
denoted as P(A|B), is

P(A|B) :=
P(A ∩B)

P(B)
.

• Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)
.

• Events A and B are independent ⇐⇒ P(A|B) = P(A).
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Probability Space

• For more than two events:
• Mutual independence (or collective independence) intuitively

means that each event is independent of any combination of
other events;

• Pairwise independence means any two events in the
collection are independent of each other.

• Sets A1, . . . ,An are (mutually) independent if for any
I ⊂ {1, . . . ,n} we have P(∩i∈IAi) =

∏
i∈I P(Ai).

• Warning: Only having P(∩ni=1Ai) =
∏n
i=1 P(Ai) is not

sufficient!

• Sets A1, . . . ,An are pairwise independent if for any i 6= j we
have P(Ai ∩Aj) = P(Ai)P(Aj).

• Clearly, mutual independence implies pairwise independence,
but not vice versa!
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Probability Space I Borel-Cantelli Lemma

Consider a sequence of sets {An : n ≥ 1}.

(The First) Borel-Cantelli Lemma

If
∑∞
n=1 P(An) < ∞, then P(An i.o.) = 0, where “i.o.”

denotes “infinitely often”.

The Secon Borel-Cantelli Lemma

If
∑∞
n=1 P(An) = ∞ and {An} are independent,† then

P(An i.o.) = 1.

• Remark: For event A, if P(A) = 1, then we say A happens
almost surely (a.s.).

†
The assumption of independence can be weakened to pairwise independence, with more difficult proof.
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1 Probability Space

2 Random Variables & Distributions

3 Expectations

4 Common Distributions

5 Useful Inequalities

6 Convergence

7 Properties of a Random Sample

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 8 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Random Variables & Distributions I Scalar

• A random variable (RV) is a function from a sample space Ω
into the set of real numbers R.

• Formally, given the probability space (Ω,F , P), a RV X is a
function X : Ω→ R, such that for any a ∈ R,

{ω ∈ Ω : X(ω) ≤ a} ∈ F .

• For a particular element ω ∈ Ω, X(ω) is called a realization of
X.
• Usually, we will simply denote X(ω) as x when ω is not

explicitly shown.
• A popular convention is to denote the RVs by upper-case

letters (e.g., X and Y ) and their realizations by lower-case
letters (e.g., x and y).
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Random Variables & Distributions I Scalar

• Example 1’: Let X(H) = 0, X(T) = 1.

• Example 2’:
• Under (Ω,F , P), let X(R) = 0, X(G) = 1, and X(B) = 2.
• Under (Ω,F1, P), let X(R) = 0, X(G) = 1, and X(B) = 1.

• Example 3’:

• Under (Ω,F1, P), let X(ω) :=

{
0, if ω ∈ [0, a),
1, if ω ∈ [a, 1].

• Under (Ω,F , P), let X(ω) = ω for ω ∈ [0, 1].
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Random Variables & Distributions I Scalar

• The cumulative distribution function (CDF) of a RV X,
denoted by F : R→ [0, 1], is defined by

F (x) := P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}), ∀x ∈ R,

and the following is satisfied:

• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1;
• F (x) is nondecreasing in x;
• F (x) is right-continuous, that is, for any x0 ∈ R,

lim
x↓x0

F (x) = F (x0).
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Random Variables & Distributions I Scalar

• A RV X is said to be discrete if the set of its possible values
is countable.

• The probability mass function (pmf) of a discrete RV X is
given by

p(x) := P(X = x) = P({ω ∈ Ω : X(ω) = x}), ∀x ∈ R,

and the following is satisfied:

• p(x) ≥ 0 for all x ∈ R;
•
∑
x∈R p(x) = 1.

• It is easy to see that F (x) =
∑

y∈(−∞,x] p(y).
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p(x) := P(X = x) = P({ω ∈ Ω : X(ω) = x}), ∀x ∈ R,

and the following is satisfied:

• p(x) ≥ 0 for all x ∈ R;
•
∑
x∈R p(x) = 1.

• It is easy to see that F (x) =
∑

y∈(−∞,x] p(y).
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Random Variables & Distributions I Scalar

• A RV X is said to be continuous if there exists a probability
density function (pdf) f(x) such that

F (x) = P(X ≤ x) =

∫ x

−∞
f(t)dt, ∀x ∈ R,

and the following is satisfied:

• f(x) ≥ 0 for all x ∈ R;
•
∫ +∞
−∞ f(t)dt = 1.

• Observe that d
dxF (x) = f(x).
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Random Variables & Distributions I Vector

• The joint CDF of RVs X and Y , denoted by F : R×R→ [0, 1],
is defined by

F (x, y) := P(X ≤ x,Y ≤ y)

= P({ω : X(ω) ≤ x} ∩ {ω : Y (ω) ≤ y}), ∀x, y ∈ R.

• For discrete RVs X and Y , the joint pmf is given by

p(x, y) := P(X = x,X = y)

= P({ω : X(ω) = x} ∩ {ω : Y (ω) = y}), ∀x, y ∈ R.

• For continuous RVs X and Y , the joint pdf is f(x, y) such
that

F (x, y) =

∫ y

−∞

∫ x

−∞
f(t,u)dtdu, ∀x, y ∈ R.

• Observe that ∂2F (x, y)
∂x∂y = f(x, y).
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Random Variables & Distributions I Vector

• Given the random vector (X,Y )
ᵀ
, the distribution of X or Y

is called the marginal distribution.

• The marginal CDF of X is FX(x) = F (x, +∞).

• If (X,Y )
ᵀ

is discrete, the marginal pmf of X is

pX(x) =
∑
y∈R

p(x, y).

• If (X,Y )
ᵀ

is continuous, the marginal pdf of X is

fX(x) =

∫ +∞

−∞
f(x, y)dy.

• For Y , its marginal CDF, and pmf or pdf, can be determined
similarly.
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Random Variables & Distributions I Conditional Distribution

• If (X,Y )
ᵀ

is discrete, for any y such that P(Y = y) = pY (y)
> 0, the conditional pmf of X given that Y = y is defined as

p(x|y) := P(X = x|Y = y) =
p(x, y)

pY (y)
.

• If (X,Y )
ᵀ

is continuous, for any y such that fY (y) > 0, the
conditional pdf of X given that Y = y is defined as

f(x|y) :=
f(x, y)

fY (y)
.
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Random Variables & Distributions I Conditional Distribution

Intuitively, f(x|y) can be understood as follows (although it is not
the most rigorous approach):

1 Note that

F (x|Y = y) = lim
∆→0

F (x|Y between y and y + ∆)

= lim
∆→0

P(X ≤ x,Y between y and y + ∆)

P(Y between y and y + ∆)

=
lim∆→0[F (x, y + ∆)− F (x, y)]/∆

lim∆→0[FY (y + ∆)− FY (y)]/∆

=

∂
∂yF (x, y)

d
dyFY (y)

=

∂
∂y

∫ y
−∞

∫ x
−∞ f(t,u)dtdu

fY (y)

=

∫ x
−∞ f(t, y)dt

fY (y)
.

2 Then, f(x|y) = ∂
∂xF (x|Y = y) =

∂
∂x

∫ x
−∞ f(t,y)dt

fY (y) = f(x,y)
fY (y) .
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Random Variables & Distributions I Independence

• Two RVs X and Y are said to be statistically independent,
which can be denoted as X ⊥ Y , when, for any x, y ∈ R,

F (x, y) = FX(x)FY (y),

or,

p(x, y) = pX(x)pY (y), or,

f(x, y) = fX(x)fY (y).

• X and Y are independent ⇐⇒
• p(x|y) ≡ pX(x) or f(x|y) ≡ fX(x) regardless of the value y;

• P(X ∈ A,Y ∈ B) = P(X ∈ A)P(X ∈ B) for any A,B ⊂ R.
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Random Variables & Distributions I Independence

• For more than two RVs X1, . . . ,Xn, the joint CDF, joint pmf
or pdf, and the marginal pmf or pdf, are defined analogically.

• RVs X1, . . . ,Xn are (mutually) independent if

F (x1, . . . ,xn) ≡ FX1(x1)× · · · × FXn(xn), or,

p(x1, . . . ,xn) ≡ pX1(x1)× · · · × pXn(xn), or,

f(x1, . . . ,xn) ≡ fX1(x1)× · · · × fXn(xn).

• RVs X1, . . . ,Xn are pairwise independent if for any i 6= j,
Xi ⊥ Xj .
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Expectations

• The expectation, or expected value, or mean, of a RV X is
defined as

E[X] :=

∫
Ω
X(ω)dP(ω),

provided that
∫

Ω |X(ω)|dP(ω) <∞ or X ≥ 0 a.s., where the
integral is the Lebesgue integral, rather than the Riemann
integral.

• For function h : R→ R, E[h(X)] =
∫

Ω h(X(ω))dP(ω).

• If X is a discrete RV:
• E[X] =

∑
x∈R xp(x);

• E[h(X)] =
∑
x∈R h(x)p(x).

• If X is a continuous RV:
• E[X] =

∫ +∞
−∞ xf(x)dx;

• E[h(X)] =
∫ +∞
−∞ h(x)f(x)dx.
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Expectations

• For integer n, E[Xn] is called the nth moment of X, and
E[(X − E[X])n] is called the nth central moment of X.

• Some special moments:
• Mean (1st moment): µ := E[X].
• Variance (2nd central moment):
σ2 := Var(X) := E[(X − E[X])2] = E[X2]− (E[X])2.

• Linear association:
• Covariance:

Cov(X,Y ) := E[(X−E[X])(Y −E[Y ])] = E[XY ]−E[X]E[Y ].

• Correlation: ρ(X,Y ) := Cov(X,Y )√
Var(X) Var(Y )

.

• In general, X ⊥ Y =⇒Y⇐= ρ(X,Y ) = 0 ⇐⇒ Cov(X,Y ) = 0.

• If (X,Y )
ᵀ

follows a bivariate normal distribution,† then
X ⊥ Y ⇐⇒ ρ(X,Y ) = 0.

†
CAUTION: It means MORE than that X and Y both follow a normal distribution! More details latter.
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Expectations

• The conditional expectation of X given Y = y is

E[X|y] :=

{∑
x∈R xp(x|y), if X is discrete,∫ +∞
−∞ xf(x|y)dx, if X is continuous.

• The conditional variance of X given Y = y is

Var(X|y) := E[(X − E[X])2|y] = E[X2|y]− (E[X|y])2.

• If X 6⊥ Y , then E[X|y] and Var(X|y) are functions of y.

• If X 6⊥ Y , then E[X|Y ] and Var(X|Y ) are also RVs, whose
value depends on the value of Y .

• If X ⊥ Y , then E[X|y] = E[X|Y ] = E[X], and Var(X|y) =
Var(X|Y ) = Var(X).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 23 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Expectations

• The conditional expectation of X given Y = y is

E[X|y] :=

{∑
x∈R xp(x|y), if X is discrete,∫ +∞
−∞ xf(x|y)dx, if X is continuous.

• The conditional variance of X given Y = y is

Var(X|y) := E[(X − E[X])2|y] = E[X2|y]− (E[X|y])2.

• If X 6⊥ Y , then E[X|y] and Var(X|y) are functions of y.

• If X 6⊥ Y , then E[X|Y ] and Var(X|Y ) are also RVs, whose
value depends on the value of Y .

• If X ⊥ Y , then E[X|y] = E[X|Y ] = E[X], and Var(X|y) =
Var(X|Y ) = Var(X).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 23 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Expectations

• The conditional expectation of X given Y = y is

E[X|y] :=

{∑
x∈R xp(x|y), if X is discrete,∫ +∞
−∞ xf(x|y)dx, if X is continuous.

• The conditional variance of X given Y = y is

Var(X|y) := E[(X − E[X])2|y] = E[X2|y]− (E[X|y])2.

• If X 6⊥ Y , then E[X|y] and Var(X|y) are functions of y.

• If X 6⊥ Y , then E[X|Y ] and Var(X|Y ) are also RVs, whose
value depends on the value of Y .

• If X ⊥ Y , then E[X|y] = E[X|Y ] = E[X], and Var(X|y) =
Var(X|Y ) = Var(X).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 23 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Expectations

• The conditional expectation of X given Y = y is

E[X|y] :=

{∑
x∈R xp(x|y), if X is discrete,∫ +∞
−∞ xf(x|y)dx, if X is continuous.

• The conditional variance of X given Y = y is

Var(X|y) := E[(X − E[X])2|y] = E[X2|y]− (E[X|y])2.

• If X 6⊥ Y , then E[X|y] and Var(X|y) are functions of y.

• If X 6⊥ Y , then E[X|Y ] and Var(X|Y ) are also RVs, whose
value depends on the value of Y .

• If X ⊥ Y , then E[X|y] = E[X|Y ] = E[X], and Var(X|y) =
Var(X|Y ) = Var(X).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 23 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Expectations

• The conditional expectation of X given Y = y is

E[X|y] :=

{∑
x∈R xp(x|y), if X is discrete,∫ +∞
−∞ xf(x|y)dx, if X is continuous.

• The conditional variance of X given Y = y is

Var(X|y) := E[(X − E[X])2|y] = E[X2|y]− (E[X|y])2.

• If X 6⊥ Y , then E[X|y] and Var(X|y) are functions of y.

• If X 6⊥ Y , then E[X|Y ] and Var(X|Y ) are also RVs, whose
value depends on the value of Y .

• If X ⊥ Y , then E[X|y] = E[X|Y ] = E[X], and Var(X|y) =
Var(X|Y ) = Var(X).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 23 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Expectations

• E[aX + bY ] = aE[X] + bE[Y ].

• Var(aX + bY ) = a2 Var(X) + 2abCov(X,Y ) + b2 Var(Y ).

• Cov(aX + bY , cW + dV ) = acCov(X,W )+
adCov(X,V ) + bcCov(Y ,W ) + bdCov(Y ,V ).

• E[E[X|Y ]] = E[X].

• Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

• If X ⊥ Y , then E[XY ] = E[X]E[Y ].
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Common Distributions I Discrete

• X ∼ Bernoulli(p) or Ber(p), if

X =

{
1, with probability p,
0, with probability 1− p,

p ∈ [0, 1].

• E[X] = p, Var(X) = p(1− p).
• The value X = 1 is often termed a “success” and p is referred

to as the success probability.

• Y ∼ binomial(n, p) or B(n, p): The number of successes
among n (mutually) independent and identically
distributed (iid) Ber(p) trials.

• Y =
∑n
i=1Xi, where Xi ∼ Ber(p) are iid.

• p(y) = P(Y = y) =
(
n
y

)
py(1− p)n−y, y = 0, 1, . . . ,n.

• E[Y ] = np, Var(Y ) = np(1− p).

• If Y1 ∼ B(n1, p) and Y2 ∼ B(n2, p) are independent, then
Y1 + Y2 ∼ B(n1 + n2, p).
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Common Distributions I Discrete

• Y ∼ negative binomial(r, p) or NB(r, p): The number of iid
Ber(p) trials to obtain r successes.

• p(y) = P(Y = y) =
(
y−1
r−1

)
pr(1− p)y−r, y = r, r + 1, . . . .

• E[Y ] = r + r(1− p)/p, Var(Y ) = r(1− p)/p2.
• When r = 1, it becomes the geometric distribution.

• Y ∼ geometric(p) or Geo(p): The number of iid Ber(p) trials
to obtain the first success.
• p(y) = P(Y = y) = p(1− p)y−1, y = 1, 2, . . . .
• E[Y ] = 1/p, Var(Y ) = (1− p)/p2.
• Memoryless Property: For integers s > t,

P(Y > s|Y > t) =
P(Y > s,Y > t)

P(Y > t)
=

P(Y > s)

P(Y > t)
=

(1− p)s

(1− p)t
= (1− p)s−t

= P(X > s− t).

• If Y1 ∼ NB(r1, p) and Y2 ∼ NB(r2, p) are independent, then
Y1 + Y2 ∼ NB(r1 + r2, p).
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Common Distributions I Discrete

• Poisson distribution is often used to model the number of
occurrence in a given time interval.

• One of the basic assumptions is that, for very small time
intervals, the probability of an occurrence is proportional to
the length of the time interval.†

• X ∼ Poisson(λ) or Pois(λ), with λ > 0, if

p(x) = P(X = x) =
e−λλx

x!
, x = 0, 1, . . . .

• It can be verified that
∑∞
x=0 p(x) = 1.

• E[X] = λ, Var(X) = λ.

• If X1 ∼ Pois(λ1) and X2 ∼ Pois(λ2) are independent,
• X1 +X2 ∼ Pois(λ1 + λ2);
• Given X1 +X2 = n, X1 ∼ B(n,λ1/(λ1 + λ2)).

†
See more detailed discussion in Lec 3.
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Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.
• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.
• E[X] = 1/λ, Var(X) = 1/λ2.
• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.
• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.
• E[X] = 1/λ, Var(X) = 1/λ2.
• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.
• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.
• E[X] = 1/λ, Var(X) = 1/λ2.
• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.

• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.
• E[X] = 1/λ, Var(X) = 1/λ2.
• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.
• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.

• E[X] = 1/λ, Var(X) = 1/λ2.
• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.
• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.
• E[X] = 1/λ, Var(X) = 1/λ2.

• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Uniform(a, b) or Unif(a, b) with a < b, if its pdf is given
by

f(x) =

{
1
b−a , if x ∈ [a, b],

0, otherwise.

• E[X] = b+a
2 , Var(X) = (b−a)2

12 .

• X ∼ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given
by

f(x) = λe−λx, x ∈ [0,∞).

• λ is called the rate parameter.
• F (x) = 1− e−λx, P(X > x) = 1− F (x) = e−λx.
• E[X] = 1/λ, Var(X) = 1/λ2.
• Memoryless Property: For s > t ≥ 0,

P(X > s|X > t) =
P(X > s,X > t)

P(X > t)
=

P(X > s)

P(X > t)
=
e−λs

e−λt
= e−λ(s−t)

= P(X > s− t).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 29 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• If X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2) are independent, then
min{X1,X2} ∼ Exp(λ1 + λ2).

• If X ∼ Exp(λ), then for α > 0, Y := X1/α ∼Weibull(α,β)
in shape & scale parametrization with β = (1/λ)1/α, whose
pdf is

f(y) = αβ−αyα−1e−(y/β)α , y ∈ (0,∞).

• Erlang(k,λ) or Erl(k,λ), with k being a positive integer, is a
generalized version of Exp(λ), whose pdf is

f(x) =
λk

(k − 1)!
xk−1e−λx, x ∈ [0,∞).

• E[X] = k/λ, Var(X) = k/λ2.
• k = 1 =⇒ Exp(λ).

• If X1 ∼ Erl(k1,λ) and X2 ∼ Erl(k2,λ) are independent, then
X1 +X2 ∼ Erl(k1 + k2,λ).

• If X ∼ Erl(k,λ), then cX ∼ Erl(k,λ/c) for c > 0.
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Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);
• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square

distribution with p degrees of freedom, denoted as χ2
p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);
• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square

distribution with p degrees of freedom, denoted as χ2
p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);
• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square

distribution with p degrees of freedom, denoted as χ2
p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);
• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square

distribution with p degrees of freedom, denoted as χ2
p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);
• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square

distribution with p degrees of freedom, denoted as χ2
p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);

• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square
distribution with p degrees of freedom, denoted as χ2

p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• X ∼ Gamma(α,λ) in shape & rate parametrization with
α,λ > 0, if its pdf is given by

f(x) =
λα

Γ(α)
xα−1e−λx, x ∈ [0,∞).

• E[X] = α/λ, Var(X) = α/λ2.

• Γ(α) :=
∫∞

0 tα−1e−tdt is known as the gamma function.

• Γ(α+ 1) = αΓ(α); Γ(n) = (n− 1)!, for integer n > 0.

• If X1 ∼ Gamma(α1,λ) and X2 ∼ Gamma(α2,λ) are
independent, then X1 +X2 ∼ Gamma(α1 + α2,λ).

• If X ∼ Gamma(α,λ), then cX ∼ Gamma(α,λ/c) for c > 0.

• Important special cases of Gamma(α,λ):
• α is an integer =⇒ Erl(α,λ); α = 1 =⇒ Exp(λ);
• α = p/2, where p is an integer, and λ = 1/2 =⇒ chi-square

distribution with p degrees of freedom, denoted as χ2
p.

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 31 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Common Distributions I Continuous

• Beta distribution is a very flexible distribution that in a finite
interval.

• X ∼ Beta(α,β) with α,β > 0, if its pdf is given by

f(x) =
xα−1(1− x)β−1

B(α,β)
, x ∈ [0, 1].

• E[X] = α/(α+ β), Var(X) = αβ
(α+β)2(α+β+1) .

• B(α,β) :=
∫ 1

0 t
α−1(1− t)β−1dt is known as the beta function.

• B(α,β) = Γ(α)Γ(β)
Γ(α+β) .

• The Beta(α,β) pdf is quite flexible
• α = 1,β = 1 =⇒ Unif(0, 1)
• α > 1,β = 1 =⇒ strictly increasing
• α = 1,β > 1 =⇒ strictly decreasing
• α < 1,β < 1 =⇒ U-shaped
• α > 1,β > 1 =⇒ unimodal
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Common Distributions I Continuous

• X ∼ Student’s t distribution with p degrees of freedom,
denoted as tp, where p is an integer, if its pdf is given by

f(x) =
Γ(p+1

2 )

Γ(p2)

1

(pπ)1/2

1

(1 + x2/p)(p+1)/2
, x ∈ R.

• E[X] = 0 if p > 1;
• Var(X) = p/(p− 2) if p > 2.

• t1 is also known as the standard Cauchy distribution, or
Cauchy(0, 1), whose pdf is simply

f(x) =
1

π(1 + x2)
, x ∈ R.
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Common Distributions I Normal Distribution

• The normal distribution (sometimes called the Gaussian
distribution) plays a central role in a large body of statistics.

• X ∼ normal distribution with mean µ and variance σ2,
denoted as N (µ,σ2), with σ > 0, if its pdf is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R.

• E[X] = µ, Var(X) = σ2.

• If X ∼ N (µ,σ2), then Z := (X − µ)/σ ∼ N (0, 1).
• Z is also known as the standard normal RV.
• We often use Φ(z) and φ(z) to denote the CDF and pdf of Z.
• P(X ≤ x) = Φ((x− µ)/σ).

• If X ∼ N (µ,σ2), then a+ bX ∼ N (a+ bµ, b2σ2) for b > 0.

• If X1 ∼ N (µ1,σ2
1) and X2 ∼ N (µ2,σ2

2) are independent,
then X1 +X2 ∼ N (µ1 + µ2,σ2

1 + σ2
2).
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1) and X2 ∼ N (µ2,σ2

2) are independent,
then X1 +X2 ∼ N (µ1 + µ2,σ2

1 + σ2
2).
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Common Distributions I Normal Distribution

• The normal distribution (sometimes called the Gaussian
distribution) plays a central role in a large body of statistics.

• X ∼ normal distribution with mean µ and variance σ2,
denoted as N (µ,σ2), with σ > 0, if its pdf is given by

f(x) =
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e−
(x−µ)2

2σ2 , x ∈ R.
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Common Distributions I Normal Distribution

• If Z ∼ N (0, 1), then Z2 ∼ χ2
1.

Proof. Let Y := Z2. For y ∈ [0,∞),

P(Y ≤ y) = P(Z2 ≤ y) = P(−√y ≤ Z ≤ √y) =

∫ √y
−√y

φ(t)dt =: F (y).

Then,

f(y) =
d

dy
F (y) = φ(

√
y)

d

dy

√
y − φ(−√y)

d

dy
(−√y)

= 2φ(
√
y)

d

dy

√
y =

1√
2π
e−

y
2 y−

1
2 .

If Y ∼ χ2
1, i.e., Y ∼ Gamma(1/2, 1/2), it means its pdf is

f(y) =
1√

2Γ( 1
2
)
y−

1
2 e−

y
2 .

The proof is completed by showing that Γ( 1
2
) =

∫∞
0
t−

1
2 e−tdt =

√
π,

which can be seen if we convert to polar coordinates. �
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Common Distributions I Normal Distribution

• If Z ∼ N (0, 1) and V ∼ χ2
p are independent, then Z√

V/p
∼ tp.

Proof. Since V ∼ χ2
p, by definition, its pdf is

fV (v) =
( 1
2
)
p
2

Γ( p
2
)
v
p
2
−1e−

1
2
v, v ∈ [0,∞).

Let Y :=
√
V/p. For y ∈ [0,∞),

fY (y) =
d

dy
P(Y ≤ y) =

d

dy
P(V ≤ py2) =

d

dy

∫ py2

0

fV (v)dv = 2pyfV (py2).

Let T := Z√
V/p

= Z
Y

. For t ∈ R,

P(T ≤ t) = P
(Z
Y
≤ t
)

= P(Z ≤ tY ) =

∫ ∞
0

P(Z ≤ ty)fY (y)dy. (Why?)

Then,

fT (t) =
d

dt
P(T ≤ t) =

∫ ∞
0

d

dt
P(Z ≤ ty)fY (y)dy.
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Common Distributions I Normal Distribution

Proof. (Cont’d) Note that d
dt

P(Z ≤ ty) = d
dt

∫ ty
−∞ φ(z)dz = yφ(ty).

So,

fT (t) =

∫ ∞
0

yφ(ty)fY (y)dy =

∫ ∞
0

yφ(ty)2pyfV (py2)dy

=

∫ ∞
0

2py2 · 1√
2π
e−

t2y2

2 ·
( 1
2
)
p
2

Γ( p
2
)
(py2)

p
2
−1e−

1
2
py2dy

=
1

Γ( p
2
)

1

(pπ)1/2
2

1−p
2 p

p+1
2

∫ ∞
0

ype−
1
2
(t2+p)y2dy.

Let x := y2. Then, integration by substitution shows that∫ ∞
0

ype−
1
2
(t2+p)y2dy =

1

2

∫ ∞
0

x
p−1
2 e−

1
2
(t2+p)xdx =:

1

2

∫ ∞
0

xα−1e−λxdx,

where α := p+1
2

and λ := 1
2
(t2 + p). Recalling the pdf of Γ(α,λ), it is easy to

see that
∫∞
0
xα−1e−λxdx = Γ(α)/λα. Finally,

fT (t) =
1

Γ( p
2
)

1

(pπ)1/2
2

1−p
2 p

p+1
2 · 1

2

Γ( p+1
2

)

(1/2)(p+1)/2(t2 + p)(p+1)/2

=
Γ( p+1

2
)

Γ( p
2
)

1

(pπ)1/2
1

(1 + t2/p)(p+1)/2
. �
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and λ := 1
2
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Common Distributions I Normal Distribution

• X := (X1, . . . ,Xk)
ᵀ

is said to follow a k-variate normal
distribution, if every linear combination of X1, . . . ,Xk follows
a (univariate) normal distribution.

• X is also called a (k dimensional) normal random vector.
• If k = 2, X = (X1,X2)ᵀ is also said to follow a bivariate

normal distribution.

• X ∼ a k-variate normal distribution, denoted as N (µ, Σ), if
its joint pdf is given by

f(x) =
1

(2π)k/2|Σ|1/2
e−

1
2

(x−µ)ᵀΣ−1(x−µ)
, x ∈ Rk ,

where |Σ| is the determinant of Σ.
• µ = (µ1, . . . ,µk)ᵀ = E[X] = (E[X1], . . . , E[Xk])ᵀ ∈ Rk.

• Σ = (Σij) = Cov(X,X) = (Cov(Zi,Zj)) ∈ Rk×k.
• Σ is a symmetric and positive definite matrix.
• Xi ∼ N (µi,σ

2
i ), i = 1, . . . , k.
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Common Distributions I Normal Distribution

• If X ∼ N (µ, Σ) is k dimensional, then

• Z := A−1(X − µ) ∼ N (0, I), where A satisfies Σ = AAᵀ

(Cholesky decomposition), 0 ∈ Rk, and I ∈ Rk×k denotes the
identity matrix.

• Z = (Z1, . . . ,Zk)ᵀ, where Zi ∼ N (0, 1), i = 1, . . . , k, iid.
• a+BX ∼ N (a+Bµ,BΣBᵀ).†

• Suppose X is a k dimensional random vector. Then,
X ∼ N (µ, Σ) ⇐⇒
There exist µ ∈ Rk and A ∈ Rk×` such that X = µ+AZ,
where Z ∼ N (0, I) with 0 ∈ R` and I ∈ R`×`.
• Such A must satisfy Σ = AAᵀ.

†
The multivariate normal distribution will be degenerate if B does not have full row rank (B 不行满秩).
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Common Distributions I Normal Distribution

• Bivariate normal distribution: (X1,X2)
ᵀ ∼ N (µ, Σ), where

µ = (µ1,µ2)
ᵀ
, and

Σ =

[
Cov(X1,X1) Cov(X1,X2)
Cov(X2,X1) Cov(X2,X2)

]
=:

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

and the joint pdf is

f(x1,x2) =
1

2πσ1σ2

√
1− ρ2

× e−
1

2(1−ρ2)

[(
x1−µ1
σ1

)2
−2ρ
(
x1−µ1
σ1

)(
x2−µ2
σ2

)
+
(
x2−µ2
σ2

)2]
.

• To see ρ = 0 =⇒ X1 ⊥ X2, let ρ = 0, and note

f(x1,x2) =
1

2πσ1σ2
e
− 1

2

[(
x1−µ1
σ1

)2
+
(
x2−µ2
σ2

)2]
=

1√
2πσ1

e
− (x1−µ1)2

2σ21 × 1√
2πσ2

e
− (x2−µ2)2

2σ22 = fX1(x1)fX2(x2).
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Common Distributions I Normal Distribution

• Bivariate normal distribution: (X1,X2)
ᵀ ∼ N (µ, Σ), where

µ = (µ1,µ2)
ᵀ
, and

Σ =

[
Cov(X1,X1) Cov(X1,X2)
Cov(X2,X1) Cov(X2,X2)

]
=:

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

and the joint pdf is

f(x1,x2) =
1

2πσ1σ2

√
1− ρ2

× e−
1

2(1−ρ2)

[(
x1−µ1
σ1

)2
−2ρ
(
x1−µ1
σ1

)(
x2−µ2
σ2

)
+
(
x2−µ2
σ2

)2]
.
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e
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Common Distributions I Normal Distribution

• If (X1,X2)
ᵀ ∼ N (µ, Σ) and Xi ∼ N (µi,σ

2), i = 1, 2, then
X1 +X2 ⊥ X1 −X2.

Proof. Note that

Y :=

[
X1 +X2

X1 −X2

]
=

[
1 1
1 −1

] [
X1

X2

]
=: B

[
X1

X2

]
.

Since B has full row rank, Y ∼ N (Bµ,BΣBᵀ), which is
non-degenerate. Hence, to prove X1 +X2 ⊥ X1 −X2, it suffices to
show Cov(X1 +X2,X1 −X2) = 0. Note that

Cov(X1 +X2,X1 −X2) = Cov(X1,X1)− Cov(X2,X2)

= σ2 − σ2 = 0. �
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Common Distributions I Relationships

• There are many other relationships among various probability
distributions.
• See, for example, Song (2005) ;
• Or, Leemis & McQueston (2008) and their online interactive

graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html652 Song

Fig. 1. Relationships among 35 distributions. (An arrow beginning and ending at the same rectangle indicates that it remains in the
same distribution family, but the parameter values might change.)

For example, the arrow from the Normal (R3C1) to the
Standard Normal (R3C2) indicates that subtracting the
mean from a Normal and dividing by its standard devi-
ation yields a Standard Normal distribution.

In Fig. 1, if more than one random variable is involved
to form a transformation, the relationship between these
random variables is denoted by “iid” (independent and
identically distributed), “indep” (independent), or “k-dim

Figure: Relationships Among 35
Distributions (from Song (2005) )

Figure 1. Univariate distribution relationships.

The American Statistician, February 2008, Vol. 62, No. 1 47

Figure: Relationships Among 76
Distributions (from Leemis & McQueston (2008) )
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Useful Inequalities I Markov’s Inequality

Markov’s Inequality

Let X be a RV. If P(X ≥ 0) = 1 and P(X = 0) < 1, then,
for any r > 0,

P(X ≥ r) ≤ E[X]

r
,

with equality if and only if

X =

{
r, with probability p,
0, with probability 1− p.

• Markov’s Inequality has many variations, which are usually
called Chebyshev’s Inequality.
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Useful Inequalities I Chebyshev’s Inequality

Chebyshev’s Inequality

Let X be a RV and g(x) be a nonnegative function. Then,
for any r > 0,

P(g(X) ≥ r) ≤ E[g(X)]

r
.

Chebyshev’s Inequality

Let X be a RV. Then, for any r, p > 0,

P(|X| ≥ r) ≤ E[|X|p]
rp

,

P(|X − µ| ≥ r) ≤ σ2

r2
,

where µ := E[X], and σ2 := Var(X).
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Useful Inequalities I Tighter Bound for Z

• Chebyshev’s Inequality is typically very conservative.

• If Z ∼ N (0, 1), a tighter bound is available: For any t > 0,

2Φ(−t) = P(|Z| ≥ t) ≤
√

2

π

1

t
e−t

2/2,

2Φ(−t) = P(|Z| ≥ t) ≥
√

2

π

t

1 + t2
e−t

2/2.
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Useful Inequalities I Jensen’s Inequality

• A function g(x) is convex if

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y),

for all x and y, and λ ∈ (0, 1).

• A function g(x) is concave if −g(x) is convex.

Jensen’s Inequality

Let X be a RV. If g(x) is a convex function, then

E[g(X)] ≥ g(E[X]),

with equality if and only if g(x) is a linear function on some
set A such that P(X ∈ A) = 1.
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Useful Inequalities I Hölder’s Inequality

Hölder’s Inequality

Let X and Y be any two RVs, and let p and q be any two
positive numbers (necessarily greater than 1) satisfying

1

p
+

1

q
= 1.

Then,

|E[XY ]| ≤ E[|XY |] ≤ {E[|X|p]}1/p{E[|Y |q]}1/q.
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Useful Inequalities I Special Cases of Hölder’s Inequality

Cauchy-Schwarz Inequality (p = q = 2)

Let X and Y be any two RVs, then

|E[XY ]| ≤ E[|XY |] ≤ {E[|X|2]}1/2{E[|Y |2]}1/2.

Liapounov’s Inequality (Y ≡ 1)

Let X be a RV, then for any s > r > 1,

{E[|X|r]}1/r ≤ {E[|X|s]}1/s.
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Useful Inequalities I Minkowski’s Inequality

Minkowski’s Inequality

Let X and Y be any two RVs. Then, for p ≥ 1,

{E[|X + Y |p]}1/p ≤ {E[|X|p]}1/p + {E[|Y |p]}1/p.

• Remark: The preceding Hölder’s Inequality (including its
special cases) and Minkowski’s Inequality also apply to
numerical sums where there is no explicit reference to an
expectation.
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Convergence I Definition

Consider a sequence of RVs {Xn : n ≥ 1} and another RV X.

• Convergence Almost Surely (a.s.), Xn
a.s.−→ X:

P( lim
n→∞

Xn = X) = 1.

• Convergence in Probability, Xn
p−→ X:

lim
n→∞

P(|Xn −X| > ε) = 0, for any ε > 0.

• Convergence in Distribution, Xn
d−→ X or Xn ⇒ X:

lim
n→∞

Fn(x) = F (x), for any continuous point x of F (x),

where Fn and F are CDF of Xn and X, respectively.

• Convergence in Lr Norm (r ∈ [1,∞)), Xn
Lr−→ X:

lim
n→∞

E(|Xn −X|r) = 0,

given E[|Xn|r] <∞ for any n ≥ 1 and E[|X|r] <∞.
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Convergence I Relationships

• Simple relationships:

Xn
a.s.−→ X =⇒ Xn

p−→ X =⇒ Xn ⇒ X~ww
Xn

Ls−→ X
s>r≥1

=⇒ Xn
Lr−→ X =⇒ E[|Xn|r]→ E[|X|r]

• Xn ⇒ a constant c =⇒ Xn
p−→ c.

• Xn
L1

−→ X =⇒ E[Xn]→ E[X].

• Xn
a.s.−→ X ⇐⇒ supj≥n |Xj −X|

p−→ 0.

• Xn
p−→ X ⇐⇒ For every subsequence Xn(m) there is a

further subsequence Xn(mk) such that Xn(mk)
a.s.−→ X.
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Convergence I Relationships

• Question: If Xn ⇒ X or Xn
p−→ X or Xn

a.s.−→ X, does it
imply E[Xn]→ E[X]?

Monotone Convergence Theorem (MCT)

Suppose Xn
a.s.−→ X, and 0 ≤ X1 ≤ X2 ≤ · · · a.s.. Then

E[Xn]→ E[X].

Fatou’s Lemma

Suppose Xn ≥ Y a.s. for all n where E[|Y |] < ∞. Then
E[lim infn→∞Xn] ≤ lim infn→∞ E[Xn]. In particular, if
Xn ≥ 0 a.s. for all n, then the result holds.
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Convergence I Relationships

Dominated Convergence Theorem (DCT)

Suppose Xn
a.s.−→ X, |Xn| ≤ Y a.s. for all n, and E[|Y |] <

∞. Then E[Xn]→ E[X].

• The DCT is still true if
a.s.−→ is replaced by

p−→.

• An even more general result:
Suppose Xn

p−→ X, |Xn| ≤ Y a.s. for all n, and E[|Y |r] <∞
with r ≥ 1. Then, E[|Xn|r] <∞, E[|X|r] <∞, and

Xn
Lr−→ X.
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Convergence I More Properties

• X = Y a.s., if any one of the following holds:
• Xn

a.s.−→ X and Xn
a.s.−→ Y ;

• Xn
p−→ X and Xn

p−→ Y ;

• Xn
Lr−→ X and Xn

Lr−→ Y .

• If Xn
a.s.−→ X and Yn

a.s.−→ Y , then (Xn,Yn)
ᵀ a.s.−→ (X,Y )

ᵀ
.

=⇒ aXn + bYn
a.s.−→ aX + bY ; XnYn

a.s.−→ XY . (Due to CMT)

• If Xn
p−→ X and Yn

p−→ Y , then (Xn,Yn)
ᵀ p−→ (X,Y )

ᵀ
.

=⇒ aXn + bYn
p−→ aX + bY ; XnYn

p−→ XY . (Due to CMT)

• If Xn
Lr−→ X and Yn

Lr−→ Y , then (Xn,Yn)
ᵀ Lr−→ (X,Y )

ᵀ
.

=⇒ aXn + bYn
Lr−→ aX + bY .

• None of the above are true for convergence in distribution.

• If Xn ⇒ X and Yn ⇒ constant c, then (Xn,Yn)
ᵀ ⇒ (X, c)

ᵀ
.

=⇒ aXn + bYn ⇒ aX + bc; XnYn ⇒ cX. (Due to CMT; also known as

Slutsky’s theorem)
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Convergence I Continuous Mapping Theorem

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs {Xn : n ≥ 1} and another RV
X. Suppose g is a function that has the set of discontinuity
points D such that P(X ∈ D) = 0. Then,

Xn
a.s.−→ X =⇒ g(Xn)

a.s.−→ g(X);

Xn
p−→ X =⇒ g(Xn)

p−→ g(X);

Xn ⇒ X =⇒ g(Xn)⇒ g(X).

• CMT also holds for random vectors.

• Caution: For convergence in Lr norm, stronger assumption of

g than continuity is required to ensure g(Xn)
Lr−→ g(X).
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Properties of a Random Sample

• Let X1, . . . ,Xn be a random sample from a distribution with
mean µ and variance σ2, i.e., X1, . . . ,Xn are iid, and
E[Xi] = µ and Var(Xi) = σ2, i = 1, . . . ,n.

• Define

X̄ :=
1

n

n∑
i=1

Xi, and S2 :=

∑n
i=1(Xi − X̄)2

n− 1
.

• For a general distribution, the following is true:
1 X̄ is an unbiased estimator of µ, i.e., E[X̄] = µ;
2 S2 is an unbiased estimator of σ2, i.e, E[S2] = σ2;
3 Var(X̄) = σ2/n.

• If the distribution is N (µ,σ2), we further have:
4 X̄ ∼ N (µ,σ2/n), i.e., X̄−µ

σ/
√
n
∼ N (0, 1);

5 X̄ ⊥ S2;
6 (n− 1)S2/σ2 ∼ χ2

n−1;

7 X̄−µ
S/
√
n
∼ tn−1.
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Properties of a Random Sample I Law of Large Numbers

• For a general distribution, what can we say about the
distribution of X̄?

• Var(X̄) = σ2/n intuitively means that the randomness of X̄
vanishes and X̄ concentrates around µ when n gets large.

• Denote X̄ as X̄n, to explicitly indicate the effect of sample
size n.

Weak Law of Large Numbers (WLLN)

Suppose X1, . . . ,Xn are iid with mean µ and variance σ2 <

∞.† Then, X̄n
p−→ µ.

Strong Law of Large Numbers (SLLN)

Suppose X1, . . . ,Xn are iid with mean µ and variance σ2 <
∞.† Then, X̄n

a.s.−→ µ.

†
Mutual independence can be weakened to pairwise independence; σ2 <∞ can be weakened to E[|Xi|] ≤ ∞.
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Properties of a Random Sample I Central Limit Theorem

• Note that for normal distribution, X̄n−µ
σ/
√
n
∼ N (0, 1),

regardless of the value of n.

• For a general distribution, what can we say about the

distribution of X̄n−µ
σ/
√
n

?

• Note that E
[ X̄n−µ
σ/
√
n

]
= 0 and Var

( X̄n−µ
σ/
√
n

)
= 1, regardless of

the distribution and the value of n.

Central Limit Theorem (CLT)

Suppose X1, . . . ,Xn are iid with mean µ and variance σ2 ∈
(0,∞). Then,

X̄n − µ
σ/
√
n
⇒ N (0, 1).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 61 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Properties of a Random Sample I Central Limit Theorem

• Note that for normal distribution, X̄n−µ
σ/
√
n
∼ N (0, 1),

regardless of the value of n.

• For a general distribution, what can we say about the

distribution of X̄n−µ
σ/
√
n

?

• Note that E
[ X̄n−µ
σ/
√
n

]
= 0 and Var

( X̄n−µ
σ/
√
n

)
= 1, regardless of

the distribution and the value of n.

Central Limit Theorem (CLT)

Suppose X1, . . . ,Xn are iid with mean µ and variance σ2 ∈
(0,∞). Then,

X̄n − µ
σ/
√
n
⇒ N (0, 1).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 61 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Properties of a Random Sample I Central Limit Theorem

• Note that for normal distribution, X̄n−µ
σ/
√
n
∼ N (0, 1),

regardless of the value of n.

• For a general distribution, what can we say about the

distribution of X̄n−µ
σ/
√
n

?

• Note that E
[ X̄n−µ
σ/
√
n

]
= 0 and Var

( X̄n−µ
σ/
√
n

)
= 1, regardless of

the distribution and the value of n.

Central Limit Theorem (CLT)

Suppose X1, . . . ,Xn are iid with mean µ and variance σ2 ∈
(0,∞). Then,

X̄n − µ
σ/
√
n
⇒ N (0, 1).

SHEN Haihui MEM6804 Modeling and Simulation, Lec 2 Spring 2021 (full-time) 61 / 61

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/

	Cover
	Contents
	Probability Space
	Borel-Cantelli Lemma

	Random Variables & Distributions
	Scalar
	Vector
	Conditional Distribution
	Independence

	Expectations
	Common Distributions
	Discrete
	Continuous
	Normal Distribution
	Relationships

	Useful Inequalities
	Markov's Inequality
	Chebyshev's Inequality
	Tighter Bound for Z
	Jensen's Inequality
	Hölder's Inequality
	Special Cases of Hölder's Inequality
	Minkowski's Inequality

	Convergence
	Definition
	Relationships
	More Properties
	Continuous Mapping

	Properties of a Random Sample
	Law of Large Numbers
	Central Limit Theorem


