MEM6804 Modeling and Simulation for Logistics \＆Supply Chain物流与供应链建模与仿真

Theory Analysis

Lecture 2：Elements of Probability and Statistics

SHEN Haihui 沈海辉

Sino－US Global Logistics Institute
Shanghai Jiao Tong University
ㅅ shenhaihui．github．io／teaching／mem6804f
－shenhaihui＠sjtu．edu．cn

Spring 2021 （full－time）

Contents

(1) Probability Space
(2) Random Variables \& Distributions
(3) Expectations
(4) Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

(1) Probability Space

(2) Random Variables \& Distributions

(3) Expectations
4) Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

HANGHAH J

Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.

Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.

Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:

Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;

Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;
(2) Closed under complementation: If $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;

Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;
(2) Closed under complementation: If $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;
(3) Closed under countable unions: ${ }^{\dagger}$ If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, is a countable sequence of sets, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

[^0]
Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;
(2) Closed under complementation: If $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;
(3) Closed under countable unions: ${ }^{\dagger}$ If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, is a countable sequence of sets, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

[^1]
Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;
(2) Closed under complementation: If $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;
(3) Closed under countable unions: ${ }^{\dagger}$ If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, is a countable sequence of sets, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:
(1) $\mathbb{P}(A) \in[0,1]$ for any $A \in \mathcal{F}$;

[^2]
Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;
(2) Closed under complementation: If $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;
(3) Closed under countable unions: \dagger If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, is a countable sequence of sets, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:
(1) $\mathbb{P}(A) \in[0,1]$ for any $A \in \mathcal{F}$;
(2) $\mathbb{P}(\Omega)=1$;

[^3]
Probability Space

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω, sample space: A set of all possible outcomes.
- A set of some outcomes, as a subset of Ω, is called an event.
- \mathcal{F}, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
(1) $\Omega \in \mathcal{F}$;
(2) Closed under complementation: If $A \in \mathcal{F}$, then $A^{\mathrm{c}} \in \mathcal{F}$;
(3) Closed under countable unions: \dagger If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, is a countable sequence of sets, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
- $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:
(1) $\mathbb{P}(A) \in[0,1]$ for any $A \in \mathcal{F}$;
(2) $\mathbb{P}(\Omega)=1$;
(3) Countably additive: If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, is a countable sequence of disjoint sets, then $\mathbb{P}\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$.

[^4]
Probability Space

- Example 1: Flip a fair coin.
- $\Omega=\{\mathrm{H}$ (head), T (tail) $\}$;
- $\mathcal{F}=\{\emptyset,\{\mathrm{H}\},\{\mathrm{T}\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{\mathrm{H}\})=1 / 2, \mathbb{P}(\{\mathrm{~T}\})=1 / 2$, and $\mathbb{P}(\Omega)=1$.

Probability Space

- Example 1: Flip a fair coin.
- $\Omega=\{\mathrm{H}$ (head), T (tail) $\}$;
- $\mathcal{F}=\{\emptyset,\{\mathrm{H}\},\{\mathrm{T}\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{\mathrm{H}\})=1 / 2, \mathbb{P}(\{\mathrm{~T}\})=1 / 2$, and $\mathbb{P}(\Omega)=1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
- $\Omega=\{\mathrm{R}$ (red), G (green), B (blue) $\}$;
- $\mathcal{F}=\{\emptyset,\{R\},\{G\},\{B\},\{R, G\},\{R, B\},\{G, B\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{R\})=\mathbb{P}(\{G\})=\mathbb{P}(\{B\})=1 / 3$, $\mathbb{P}(\{\mathrm{R}, \mathrm{G}\})=\mathbb{P}(\{\mathrm{R}, \mathrm{B}\})=\mathbb{P}(\{\mathrm{G}, \mathrm{B}\})=2 / 3$, and $\mathbb{P}(\Omega)=1 ;$

Probability Space

- Example 1: Flip a fair coin.
- $\Omega=\{\mathrm{H}$ (head), T (tail) $\}$;
- $\mathcal{F}=\{\emptyset,\{\mathrm{H}\},\{\mathrm{T}\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{\mathrm{H}\})=1 / 2, \mathbb{P}(\{\mathrm{~T}\})=1 / 2$, and $\mathbb{P}(\Omega)=1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
- $\Omega=\{\mathrm{R}$ (red), G (green), B (blue) $\}$;
- $\mathcal{F}=\{\emptyset,\{R\},\{G\},\{B\},\{R, G\},\{R, B\},\{G, B\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{R\})=\mathbb{P}(\{G\})=\mathbb{P}(\{B\})=1 / 3$, $\mathbb{P}(\{\mathrm{R}, \mathrm{G}\})=\mathbb{P}(\{\mathrm{R}, \mathrm{B}\})=\mathbb{P}(\{\mathrm{G}, \mathrm{B}\})=2 / 3$, and $\mathbb{P}(\Omega)=1 ;$
- $\mathcal{F}_{1}=\{\emptyset,\{\mathrm{R}\},\{\mathrm{G}, \mathrm{B}\}, \Omega\}, \mathcal{F}_{2}=\{\emptyset,\{\mathrm{G}\},\{\mathrm{R}, \mathrm{B}\}, \Omega\} \ldots$

Probability Space

- Example 1: Flip a fair coin.
- $\Omega=\{\mathrm{H}$ (head), T (tail) $\}$;
- $\mathcal{F}=\{\emptyset,\{\mathrm{H}\},\{\mathrm{T}\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{\mathrm{H}\})=1 / 2, \mathbb{P}(\{\mathrm{~T}\})=1 / 2$, and $\mathbb{P}(\Omega)=1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
- $\Omega=\{\mathrm{R}$ (red), G (green), B (blue) $\}$;
- $\mathcal{F}=\{\emptyset,\{R\},\{G\},\{B\},\{R, G\},\{R, B\},\{G, B\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{R\})=\mathbb{P}(\{G\})=\mathbb{P}(\{B\})=1 / 3$, $\mathbb{P}(\{\mathrm{R}, \mathrm{G}\})=\mathbb{P}(\{\mathrm{R}, \mathrm{B}\})=\mathbb{P}(\{\mathrm{G}, \mathrm{B}\})=2 / 3$, and $\mathbb{P}(\Omega)=1$;
- $\mathcal{F}_{1}=\{\emptyset,\{\mathrm{R}\},\{\mathrm{G}, \mathrm{B}\}, \Omega\}, \mathcal{F}_{2}=\{\emptyset,\{\mathrm{G}\},\{\mathrm{R}, \mathrm{B}\}, \Omega\} \ldots$
- Example 3: Randomly "draw" a number in $[0,1]$
- $\Omega=[0,1]$;
- $\mathcal{F}_{1}=\{\emptyset,[0, a),[a, 1], \Omega\}, \mathcal{F}_{2}=\{\emptyset,(0, a),\{0\} \cup[a, 1], \Omega\} \ldots$

Probability Space

- Example 1: Flip a fair coin.
- $\Omega=\{\mathrm{H}$ (head), T (tail) $\}$;
- $\mathcal{F}=\{\emptyset,\{\mathrm{H}\},\{\mathrm{T}\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{\mathrm{H}\})=1 / 2, \mathbb{P}(\{\mathrm{~T}\})=1 / 2$, and $\mathbb{P}(\Omega)=1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
- $\Omega=\{\mathrm{R}$ (red), G (green), B (blue) $\}$;
- $\mathcal{F}=\{\emptyset,\{R\},\{G\},\{B\},\{R, G\},\{R, B\},\{G, B\}, \Omega\}$;
- $\mathbb{P}(\emptyset)=0, \mathbb{P}(\{R\})=\mathbb{P}(\{G\})=\mathbb{P}(\{B\})=1 / 3$, $\mathbb{P}(\{\mathrm{R}, \mathrm{G}\})=\mathbb{P}(\{\mathrm{R}, \mathrm{B}\})=\mathbb{P}(\{\mathrm{G}, \mathrm{B}\})=2 / 3$, and $\mathbb{P}(\Omega)=1$;
- $\mathcal{F}_{1}=\{\emptyset,\{\mathrm{R}\},\{\mathrm{G}, \mathrm{B}\}, \Omega\}, \mathcal{F}_{2}=\{\emptyset,\{\mathrm{G}\},\{\mathrm{R}, \mathrm{B}\}, \Omega\} \ldots$
- Example 3: Randomly "draw" a number in $[0,1]$
- $\Omega=[0,1]$;
- $\mathcal{F}_{1}=\{\emptyset,[0, a),[a, 1], \Omega\}, \mathcal{F}_{2}=\{\emptyset,(0, a),\{0\} \cup[a, 1], \Omega\} \ldots$
- A more practical and interesting \mathcal{F} is the one that contains all intervals (no matter open or closed) on $[0,1]$.

Probability Space

- Independence of Events: Two events A and B in \mathcal{F} are called statistically independent events when

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Probability Space

- Independence of Events: Two events A and B in \mathcal{F} are called statistically independent events when

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- Conditional Probability: If A and B are events in \mathcal{F} and $\mathbb{P}(B)>0$, then the conditional probability of A given B, denoted as $\mathbb{P}(A \mid B)$, is

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Probability Space

- Independence of Events: Two events A and B in \mathcal{F} are called statistically independent events when

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- Conditional Probability: If A and B are events in \mathcal{F} and $\mathbb{P}(B)>0$, then the conditional probability of A given B, denoted as $\mathbb{P}(A \mid B)$, is

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- Bayes' Rule:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

Probability Space

- Independence of Events: Two events A and B in \mathcal{F} are called statistically independent events when

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- Conditional Probability: If A and B are events in \mathcal{F} and $\mathbb{P}(B)>0$, then the conditional probability of A given B, denoted as $\mathbb{P}(A \mid B)$, is

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- Bayes' Rule:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- Events A and B are independent $\Longleftrightarrow \mathbb{P}(A \mid B)=\mathbb{P}(A)$.

Probability Space

- For more than two events:
- Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
- Pairwise independence means any two events in the collection are independent of each other.

Probability Space

- For more than two events:
- Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
- Pairwise independence means any two events in the collection are independent of each other.
- Sets A_{1}, \ldots, A_{n} are (mutually) independent if for any $I \subset\{1, \ldots, n\}$ we have $\mathbb{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)$.

Probability Space

- For more than two events:
- Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
- Pairwise independence means any two events in the collection are independent of each other.
- Sets A_{1}, \ldots, A_{n} are (mutually) independent if for any $I \subset\{1, \ldots, n\}$ we have $\mathbb{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)$.
- Warning: Only having $\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$ is not sufficient!

Probability Space

- For more than two events:
- Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
- Pairwise independence means any two events in the collection are independent of each other.
- Sets A_{1}, \ldots, A_{n} are (mutually) independent if for any $I \subset\{1, \ldots, n\}$ we have $\mathbb{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)$.
- Warning: Only having $\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$ is not sufficient!
- Sets A_{1}, \ldots, A_{n} are pairwise independent if for any $i \neq j$ we have $\mathbb{P}\left(A_{i} \cap A_{j}\right)=\mathbb{P}\left(A_{i}\right) \mathbb{P}\left(A_{j}\right)$.

Probability Space

- For more than two events:
- Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
- Pairwise independence means any two events in the collection are independent of each other.
- Sets A_{1}, \ldots, A_{n} are (mutually) independent if for any $I \subset\{1, \ldots, n\}$ we have $\mathbb{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)$.
- Warning: Only having $\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$ is not sufficient!
- Sets A_{1}, \ldots, A_{n} are pairwise independent if for any $i \neq j$ we have $\mathbb{P}\left(A_{i} \cap A_{j}\right)=\mathbb{P}\left(A_{i}\right) \mathbb{P}\left(A_{j}\right)$.
- Clearly, mutual independence implies pairwise independence, but not vice versa!

Probability Space

Consider a sequence of sets $\left\{A_{n}: n \geq 1\right\}$.

Probability Space

Consider a sequence of sets $\left\{A_{n}: n \geq 1\right\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$, where " i .o." denotes "infinitely often".

Probability Space

Consider a sequence of sets $\left\{A_{n}: n \geq 1\right\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$, where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lemma
If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$ and $\left\{A_{n}\right\}$ are independent, ${ }^{\dagger}$ then $\mathbb{P}\left(A_{n}\right.$ i.... $)=1$.
${ }^{\dagger}$ The assumption of independence can be weakened to pairwise independence, with more difficult proof.

Probability Space

Consider a sequence of sets $\left\{A_{n}: n \geq 1\right\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$, where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lemma

$$
\begin{aligned}
& \text { If } \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty \text { and }\left\{A_{n}\right\} \text { are independent, }{ }^{\dagger} \text { then } \\
& \mathbb{P}\left(A_{n} \text { i.... }\right)=1 \text {. }
\end{aligned}
$$

- Remark: For event A, if $\mathbb{P}(A)=1$, then we say A happens almost surely (a.s.).

[^5]
(1) Probability Space

(2) Random Variables \& Distributions

(3) Expectations

4 Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

Random Variables \& Distributions

- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R}.
- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R}.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \rightarrow \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$
\{\omega \in \Omega: X(\omega) \leq a\} \in \mathcal{F}
$$

- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R}.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \rightarrow \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$
\{\omega \in \Omega: X(\omega) \leq a\} \in \mathcal{F}
$$

- For a particular element $\omega \in \Omega, X(\omega)$ is called a realization of X.
- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R}.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \rightarrow \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$
\{\omega \in \Omega: X(\omega) \leq a\} \in \mathcal{F}
$$

- For a particular element $\omega \in \Omega, X(\omega)$ is called a realization of X.
- Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.
- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R}.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X: \Omega \rightarrow \mathbb{R}$, such that for any $a \in \mathbb{R}$,

$$
\{\omega \in \Omega: X(\omega) \leq a\} \in \mathcal{F}
$$

- For a particular element $\omega \in \Omega, X(\omega)$ is called a realization of X.
- Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.
- A popular convention is to denote the RV s by upper-case letters (e.g., X and Y) and their realizations by lower-case letters (e.g., x and y).
- Example 1': Let $X(\mathrm{H})=0, X(\mathrm{~T})=1$.

Random Variables \& Distributions

- Example 1': Let $X(\mathrm{H})=0, X(\mathrm{~T})=1$.
- Example 2':
- $\operatorname{Under}(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=2$.

Random Variables \& Distributions

- Example 1': Let $X(\mathrm{H})=0, X(\mathrm{~T})=1$.
- Example 2':
- Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=2$.
- Under $\left(\Omega, \mathcal{F}_{1}, \mathbb{P}\right)$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=1$.

Random Variables \& Distributions

- Example 1': Let $X(\mathrm{H})=0, X(\mathrm{~T})=1$.
- Example 2':
- Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=2$.
- Under $\left(\Omega, \mathcal{F}_{1}, \mathbb{P}\right)$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=1$.
- Example 3':
- Under $\left(\Omega, \mathcal{F}_{1}, \mathbb{P}\right)$, let $X(\omega):= \begin{cases}0, & \text { if } \omega \in[0, a), \\ 1, & \text { if } \omega \in[a, 1] .\end{cases}$

Random Variables \& Distributions

- Example 1': Let $X(\mathrm{H})=0, X(\mathrm{~T})=1$.
- Example 2':
- Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=2$.
- Under $\left(\Omega, \mathcal{F}_{1}, \mathbb{P}\right)$, let $X(\mathrm{R})=0, X(\mathrm{G})=1$, and $X(\mathrm{~B})=1$.
- Example 3':
- Under $\left(\Omega, \mathcal{F}_{1}, \mathbb{P}\right)$, let $X(\omega):= \begin{cases}0, & \text { if } \omega \in[0, a), \\ 1, & \text { if } \omega \in[a, 1] .\end{cases}$
- Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\omega)=\omega$ for $\omega \in[0,1]$.
- The cumulative distribution function (CDF) of a RV X, denoted by $F: \mathbb{R} \rightarrow[0,1]$, is defined by

$$
F(x):=\mathbb{P}(X \leq x)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leq x\}), \forall x \in \mathbb{R}
$$

- The cumulative distribution function (CDF) of a RV X, denoted by $F: \mathbb{R} \rightarrow[0,1]$, is defined by

$$
F(x):=\mathbb{P}(X \leq x)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leq x\}), \forall x \in \mathbb{R}
$$

and the following is satisfied:

- The cumulative distribution function (CDF) of a RV X, denoted by $F: \mathbb{R} \rightarrow[0,1]$, is defined by

$$
F(x):=\mathbb{P}(X \leq x)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leq x\}), \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1 ;$
- The cumulative distribution function (CDF) of a RV X, denoted by $F: \mathbb{R} \rightarrow[0,1]$, is defined by

$$
F(x):=\mathbb{P}(X \leq x)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leq x\}), \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$;
- $F(x)$ is nondecreasing in x;
- The cumulative distribution function (CDF) of a RV X, denoted by $F: \mathbb{R} \rightarrow[0,1]$, is defined by

$$
F(x):=\mathbb{P}(X \leq x)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leq x\}), \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$;
- $F(x)$ is nondecreasing in x;
- $F(x)$ is right-continuous, that is, for any $x_{0} \in \mathbb{R}$,

$$
\lim _{x \downarrow x_{0}} F(x)=F\left(x_{0}\right) .
$$

Random Variables \& Distributions

- A $\mathrm{RV} X$ is said to be discrete if the set of its possible values is countable.
- A $\mathrm{RV} X$ is said to be discrete if the set of its possible values is countable.
- The probability mass function (pmf) of a discrete RV X is given by

$$
p(x):=\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega: X(\omega)=x\}), \forall x \in \mathbb{R}
$$

- A RV X is said to be discrete if the set of its possible values is countable.
- The probability mass function (pmf) of a discrete RV X is given by

$$
p(x):=\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega: X(\omega)=x\}), \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $p(x) \geq 0$ for all $x \in \mathbb{R}$;
- $\sum_{x \in \mathbb{R}} p(x)=1$.
- A $\mathrm{RV} X$ is said to be discrete if the set of its possible values is countable.
- The probability mass function (pmf) of a discrete RV X is given by

$$
p(x):=\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega: X(\omega)=x\}), \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $p(x) \geq 0$ for all $x \in \mathbb{R}$;
- $\sum_{x \in \mathbb{R}} p(x)=1$.
- It is easy to see that $F(x)=\sum_{y \in(-\infty, x]} p(y)$.
- A RV X is said to be continuous if there exists a probability density function (pdf) $f(x)$ such that

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(t) \mathrm{d} t, \forall x \in \mathbb{R}
$$

- A RV X is said to be continuous if there exists a probability density function (pdf) $f(x)$ such that

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(t) \mathrm{d} t, \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$;
- $\int_{-\infty}^{+\infty} f(t) \mathrm{d} t=1$.
- A RV X is said to be continuous if there exists a probability density function (pdf) $f(x)$ such that

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(t) \mathrm{d} t, \forall x \in \mathbb{R}
$$

and the following is satisfied:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$;
- $\int_{-\infty}^{+\infty} f(t) \mathrm{d} t=1$.
- Observe that $\frac{\mathrm{d}}{\mathrm{d} x} F(x)=f(x)$.
- The joint CDF of RV s X and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$, is defined by

$$
\begin{aligned}
F(x, y) & :=\mathbb{P}(X \leq x, Y \leq y) \\
& =\mathbb{P}(\{\omega: X(\omega) \leq x\} \cap\{\omega: Y(\omega) \leq y\}), \forall x, y \in \mathbb{R}
\end{aligned}
$$

- The joint CDF of $\mathrm{RVs} X$ and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$, is defined by

$$
\begin{aligned}
F(x, y) & :=\mathbb{P}(X \leq x, Y \leq y) \\
& =\mathbb{P}(\{\omega: X(\omega) \leq x\} \cap\{\omega: Y(\omega) \leq y\}), \forall x, y \in \mathbb{R}
\end{aligned}
$$

- For discrete RVs X and Y, the joint pmf is given by

$$
\begin{aligned}
p(x, y) & :=\mathbb{P}(X=x, X=y) \\
& =\mathbb{P}(\{\omega: X(\omega)=x\} \cap\{\omega: Y(\omega)=y\}), \forall x, y \in \mathbb{R} .
\end{aligned}
$$

- The joint CDF of $\operatorname{RVs} X$ and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$, is defined by

$$
\begin{aligned}
F(x, y) & :=\mathbb{P}(X \leq x, Y \leq y) \\
& =\mathbb{P}(\{\omega: X(\omega) \leq x\} \cap\{\omega: Y(\omega) \leq y\}), \forall x, y \in \mathbb{R}
\end{aligned}
$$

- For discrete RV s X and Y, the joint pmf is given by

$$
\begin{aligned}
p(x, y) & :=\mathbb{P}(X=x, X=y) \\
& =\mathbb{P}(\{\omega: X(\omega)=x\} \cap\{\omega: Y(\omega)=y\}), \forall x, y \in \mathbb{R} .
\end{aligned}
$$

- For continuous RVs X and Y, the joint pdf is $f(x, y)$ such that

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) \mathrm{d} t \mathrm{~d} u, \forall x, y \in \mathbb{R}
$$

- The joint CDF of $\operatorname{RVs} X$ and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \rightarrow[0,1]$, is defined by

$$
\begin{aligned}
F(x, y) & :=\mathbb{P}(X \leq x, Y \leq y) \\
& =\mathbb{P}(\{\omega: X(\omega) \leq x\} \cap\{\omega: Y(\omega) \leq y\}), \forall x, y \in \mathbb{R}
\end{aligned}
$$

- For discrete RV s X and Y, the joint pmf is given by

$$
\begin{aligned}
p(x, y) & :=\mathbb{P}(X=x, X=y) \\
& =\mathbb{P}(\{\omega: X(\omega)=x\} \cap\{\omega: Y(\omega)=y\}), \forall x, y \in \mathbb{R} .
\end{aligned}
$$

- For continuous RVs X and Y, the joint pdf is $f(x, y)$ such that

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) \mathrm{d} t \mathrm{~d} u, \forall x, y \in \mathbb{R}
$$

- Observe that $\frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y)$.
- Given the random vector $(X, Y)^{\top}$, the distribution of X or Y is called the marginal distribution.
- The marginal CDF of X is $F_{X}(x)=F(x,+\infty)$.
- Given the random vector $(X, Y)^{\top}$, the distribution of X or Y is called the marginal distribution.
- The marginal CDF of X is $F_{X}(x)=F(x,+\infty)$.
- If $(X, Y)^{\top}$ is discrete, the marginal pmf of X is

$$
p_{X}(x)=\sum_{y \in \mathbb{R}} p(x, y)
$$

- Given the random vector $(X, Y)^{\top}$, the distribution of X or Y is called the marginal distribution.
- The marginal CDF of X is $F_{X}(x)=F(x,+\infty)$.
- If $(X, Y)^{\top}$ is discrete, the marginal pmf of X is

$$
p_{X}(x)=\sum_{y \in \mathbb{R}} p(x, y)
$$

- If $(X, Y)^{\top}$ is continuous, the marginal pdf of X is

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} y
$$

- Given the random vector $(X, Y)^{\top}$, the distribution of X or Y is called the marginal distribution.
- The marginal CDF of X is $F_{X}(x)=F(x,+\infty)$.
- If $(X, Y)^{\top}$ is discrete, the marginal pmf of X is

$$
p_{X}(x)=\sum_{y \in \mathbb{R}} p(x, y)
$$

- If $(X, Y)^{\top}$ is continuous, the marginal pdf of X is

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} y
$$

- For Y, its marginal CDF, and pmf or pdf, can be determined similarly.

Random Variables \& Distributions

- If $(X, Y)^{\top}$ is discrete, for any y such that $\mathbb{P}(Y=y)=p_{Y}(y)$ >0, the conditional pmf of X given that $Y=y$ is defined as

$$
p(x \mid y):=\mathbb{P}(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}
$$

- If $(X, Y)^{\top}$ is discrete, for any y such that $\mathbb{P}(Y=y)=p_{Y}(y)$ >0, the conditional pmf of X given that $Y=y$ is defined as

$$
p(x \mid y):=\mathbb{P}(X=x \mid Y=y)=\frac{p(x, y)}{p_{Y}(y)}
$$

- If $(X, Y)^{\top}$ is continuous, for any y such that $f_{Y}(y)>0$, the conditional pdf of X given that $Y=y$ is defined as

$$
f(x \mid y):=\frac{f(x, y)}{f_{Y}(y)} .
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
F(x \mid Y=y)=\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta)
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
\begin{aligned}
F(x \mid Y=y) & =\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta) \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(X \leq x, Y \text { between } y \text { and } y+\Delta)}{\mathbb{P}(Y \text { between } y \text { and } y+\Delta)}
\end{aligned}
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
\begin{aligned}
F(x \mid Y=y) & =\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta) \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(X \leq x, Y \text { between } y \text { and } y+\Delta)}{\mathbb{P}(Y \text { between } y \text { and } y+\Delta)} \\
& =\frac{\lim _{\Delta \rightarrow 0}[F(x, y+\Delta)-F(x, y)] / \Delta}{\lim _{\Delta \rightarrow 0}\left[F_{Y}(y+\Delta)-F_{Y}(y)\right] / \Delta}
\end{aligned}
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
\begin{aligned}
F(x \mid Y=y) & =\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta) \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(X \leq x, Y \text { between } y \text { and } y+\Delta)}{\mathbb{P}(Y \text { between } y \text { and } y+\Delta)} \\
& =\frac{\lim _{\Delta \rightarrow 0}[F(x, y+\Delta)-F(x, y)] / \Delta}{\lim _{\Delta \rightarrow 0}\left[F_{Y}(y+\Delta)-F_{Y}(y)\right] / \Delta} \\
& =\frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)}
\end{aligned}
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
\begin{aligned}
F(x \mid Y=y) & =\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta) \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(X \leq x, Y \text { between } y \text { and } y+\Delta)}{\mathbb{P}(Y \text { between } y \text { and } y+\Delta)} \\
& =\frac{\lim _{\Delta \rightarrow 0}[F(x, y+\Delta)-F(x, y)] / \Delta}{\lim _{\Delta \rightarrow 0}\left[F_{Y}(y+\Delta)-F_{Y}(y)\right] / \Delta} \\
& =\frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)}=\frac{\frac{\partial}{\partial y} \int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) \mathrm{d} t \mathrm{~d} u}{f_{Y}(y)}
\end{aligned}
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
\begin{aligned}
F(x \mid Y=y) & =\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta) \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(X \leq x, Y \text { between } y \text { and } y+\Delta)}{\mathbb{P}(Y \text { between } y \text { and } y+\Delta)} \\
& =\frac{\lim _{\Delta \rightarrow 0}[F(x, y+\Delta)-F(x, y)] / \Delta}{\lim _{\Delta \rightarrow 0}\left[F_{Y}(y+\Delta)-F_{Y}(y)\right] / \Delta} \\
& =\frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)}=\frac{\frac{\partial}{\partial y} \int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) \mathrm{d} t \mathrm{~d} u}{f_{Y}(y)} \\
& =\frac{\int_{-\infty}^{x} f(t, y) \mathrm{d} t}{f_{Y}(y)} .
\end{aligned}
$$

Random Variables \& Distributions

Intuitively, $f(x \mid y)$ can be understood as follows (although it is not the most rigorous approach):
(1) Note that

$$
\begin{aligned}
F(x \mid Y=y) & =\lim _{\Delta \rightarrow 0} F(x \mid Y \text { between } y \text { and } y+\Delta) \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathbb{P}(X \leq x, Y \text { between } y \text { and } y+\Delta)}{\mathbb{P}(Y \text { between } y \text { and } y+\Delta)} \\
& =\frac{\lim _{\Delta \rightarrow 0}[F(x, y+\Delta)-F(x, y)] / \Delta}{\lim _{\Delta \rightarrow 0}\left[F_{Y}(y+\Delta)-F_{Y}(y)\right] / \Delta} \\
& =\frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y}(y)}=\frac{\frac{\partial}{\partial y} \int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) \mathrm{d} t \mathrm{~d} u}{f_{Y}(y)} \\
& =\frac{\int_{-\infty}^{x} f(t, y) \mathrm{d} t}{f_{Y}(y)} .
\end{aligned}
$$

(2 Then, $f(x \mid y)=\frac{\partial}{\partial x} F(x \mid Y=y)=\frac{\frac{\partial}{\partial x} \int_{-\infty}^{x} f(t, y) \mathrm{d} t}{f_{Y}(y)}=\frac{f(x, y)}{f_{Y}(y)}$.

- Two RVs X and Y are said to be statistically independent, which can be denoted as $X \perp Y$, when, for any $x, y \in \mathbb{R}$,

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

- Two RVs X and Y are said to be statistically independent, which can be denoted as $X \perp Y$, when, for any $x, y \in \mathbb{R}$,

$$
\begin{aligned}
F(x, y) & =F_{X}(x) F_{Y}(y), \text { or }, \\
p(x, y) & =p_{X}(x) p_{Y}(y),
\end{aligned}
$$

- Two RVs X and Y are said to be statistically independent, which can be denoted as $X \perp Y$, when, for any $x, y \in \mathbb{R}$,

$$
\begin{aligned}
F(x, y) & =F_{X}(x) F_{Y}(y), \text { or }, \\
p(x, y) & =p_{X}(x) p_{Y}(y), \text { or, } \\
f(x, y) & =f_{X}(x) f_{Y}(y) .
\end{aligned}
$$

- Two RVs X and Y are said to be statistically independent, which can be denoted as $X \perp Y$, when, for any $x, y \in \mathbb{R}$,

$$
\begin{aligned}
F(x, y) & =F_{X}(x) F_{Y}(y), \text { or }, \\
p(x, y) & =p_{X}(x) p_{Y}(y), \text { or, } \\
f(x, y) & =f_{X}(x) f_{Y}(y) .
\end{aligned}
$$

- X and Y are independent \Longleftrightarrow
- $p(x \mid y) \equiv p_{X}(x)$ or $f(x \mid y) \equiv f_{X}(x)$ regardless of the value y;
- Two RVs X and Y are said to be statistically independent, which can be denoted as $X \perp Y$, when, for any $x, y \in \mathbb{R}$,

$$
\begin{aligned}
F(x, y) & =F_{X}(x) F_{Y}(y), \text { or, } \\
p(x, y) & =p_{X}(x) p_{Y}(y), \text { or } \\
f(x, y) & =f_{X}(x) f_{Y}(y) .
\end{aligned}
$$

- X and Y are independent \Longleftrightarrow
- $p(x \mid y) \equiv p_{X}(x)$ or $f(x \mid y) \equiv f_{X}(x)$ regardless of the value y;
- $\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(X \in B)$ for any $A, B \subset \mathbb{R}$.
- For more than two RVs X_{1}, \ldots, X_{n}, the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- For more than two RVs X_{1}, \ldots, X_{n}, the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- RV s X_{1}, \ldots, X_{n} are (mutually) independent if

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & \equiv F_{X_{1}}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right), \text { or, } \\
p\left(x_{1}, \ldots, x_{n}\right) & \equiv p_{X_{1}}\left(x_{1}\right) \times \cdots \times p_{X_{n}}\left(x_{n}\right), \text { or, } \\
f\left(x_{1}, \ldots, x_{n}\right) & \equiv f_{X_{1}}\left(x_{1}\right) \times \cdots \times f_{X_{n}}\left(x_{n}\right) .
\end{aligned}
$$

- For more than two RVs X_{1}, \ldots, X_{n}, the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- $\mathrm{RVs} X_{1}, \ldots, X_{n}$ are (mutually) independent if

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & \equiv F_{X_{1}}\left(x_{1}\right) \times \cdots \times F_{X_{n}}\left(x_{n}\right), \text { or, } \\
p\left(x_{1}, \ldots, x_{n}\right) & \equiv p_{X_{1}}\left(x_{1}\right) \times \cdots \times p_{X_{n}}\left(x_{n}\right), \text { or, } \\
f\left(x_{1}, \ldots, x_{n}\right) & \equiv f_{X_{1}}\left(x_{1}\right) \times \cdots \times f_{X_{n}}\left(x_{n}\right) .
\end{aligned}
$$

- RV s X_{1}, \ldots, X_{n} are pairwise independent if for any $i \neq j$, $X_{i} \perp X_{j}$.
(1) Probability Space

(2) Random Variables \& Distributions

(3) Expectations

4) Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

Expectations

- The expectation, or expected value, or mean, of a RV X is defined as

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

provided that $\int_{\Omega}|X(\omega)| \mathrm{d} \mathbb{P}(\omega)<\infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

Expectations

- The expectation, or expected value, or mean, of a RV X is defined as

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

provided that $\int_{\Omega}|X(\omega)| \mathrm{d} \mathbb{P}(\omega)<\infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h: \mathbb{R} \rightarrow \mathbb{R}, \mathbb{E}[h(X)]=\int_{\Omega} h(X(\omega)) \mathrm{d} \mathbb{P}(\omega)$.

Expectations

- The expectation, or expected value, or mean, of a RV X is defined as

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

provided that $\int_{\Omega}|X(\omega)| \mathrm{d} \mathbb{P}(\omega)<\infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h: \mathbb{R} \rightarrow \mathbb{R}, \mathbb{E}[h(X)]=\int_{\Omega} h(X(\omega)) \mathrm{d} \mathbb{P}(\omega)$.
- If X is a discrete RV :
- $\mathbb{E}[X]=\sum_{x \in \mathbb{R}} x p(x)$;
- $\mathbb{E}[h(X)]=\sum_{x \in \mathbb{R}} h(x) p(x)$.

Expectations

- The expectation, or expected value, or mean, of a RV X is defined as

$$
\mathbb{E}[X]:=\int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega)
$$

provided that $\int_{\Omega}|X(\omega)| \mathrm{d} \mathbb{P}(\omega)<\infty$ or $X \geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h: \mathbb{R} \rightarrow \mathbb{R}, \mathbb{E}[h(X)]=\int_{\Omega} h(X(\omega)) \mathrm{d} \mathbb{P}(\omega)$.
- If X is a discrete RV :
- $\mathbb{E}[X]=\sum_{x \in \mathbb{R}} x p(x)$;
- $\mathbb{E}[h(X)]=\sum_{x \in \mathbb{R}} h(x) p(x)$.
- If X is a continuous RV:
- $\mathbb{E}[X]=\int_{-\infty}^{+\infty} x f(x) \mathrm{d} x$;
- $\mathbb{E}[h(X)]=\int_{-\infty}^{+\infty} h(x) f(x) \mathrm{d} x$.

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.
- Some special moments:
- Mean (1st moment): $\mu:=\mathbb{E}[X]$.

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.
- Some special moments:
- Mean (1st moment): $\mu:=\mathbb{E}[X]$.
- Variance (2nd central moment):

$$
\sigma^{2}:=\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} .
$$

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.
- Some special moments:
- Mean (1st moment): $\mu:=\mathbb{E}[X]$.
- Variance (2nd central moment):

$$
\sigma^{2}:=\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} .
$$

- Linear association:
- Covariance:

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.
- Some special moments:
- Mean (1st moment): $\mu:=\mathbb{E}[X]$.
- Variance (2nd central moment):

$$
\sigma^{2}:=\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} .
$$

- Linear association:
- Covariance:

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

- Correlation: $\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.
- Some special moments:
- Mean (1st moment): $\mu:=\mathbb{E}[X]$.
- Variance (2nd central moment):

$$
\sigma^{2}:=\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

- Linear association:
- Covariance:

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

- Correlation: $\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.
- In general, $X \perp Y \Longrightarrow \rho(X, Y)=0 \Longleftrightarrow \operatorname{Cov}(X, Y)=0$.

Expectations

- For integer $n, \mathbb{E}\left[X^{n}\right]$ is called the nth moment of X, and $\mathbb{E}\left[(X-\mathbb{E}[X])^{n}\right]$ is called the nth central moment of X.
- Some special moments:
- Mean (1st moment): $\mu:=\mathbb{E}[X]$.
- Variance (2nd central moment):

$$
\sigma^{2}:=\operatorname{Var}(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} .
$$

- Linear association:
- Covariance:

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

- Correlation: $\rho(X, Y):=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.
- In general, $X \perp Y \Longrightarrow \rho(X, Y)=0 \Longleftrightarrow \operatorname{Cov}(X, Y)=0$.
- If $(X, Y)^{\top}$ follows a bivariate normal distribution, ${ }^{\dagger}$ then $X \perp Y \Longleftrightarrow \rho(X, Y)=0$.

[^6]
Expectations

- The conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid y]:= \begin{cases}\sum_{x \in \mathbb{R}} x p(x \mid y), & \text { if } X \text { is discrete, } \\ \int_{-\infty}^{+\infty} x f(x \mid y) \mathrm{d} x, & \text { if } X \text { is continuous. }\end{cases}
$$

Expectations

- The conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid y]:= \begin{cases}\sum_{x \in \mathbb{R}} x p(x \mid y), & \text { if } X \text { is discrete, } \\ \int_{-\infty}^{+\infty} x f(x \mid y) \mathrm{d} x, & \text { if } X \text { is continuous. }\end{cases}
$$

- The conditional variance of X given $Y=y$ is

$$
\operatorname{Var}(X \mid y):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2} \mid y\right]=\mathbb{E}\left[X^{2} \mid y\right]-(\mathbb{E}[X \mid y])^{2} .
$$

Expectations

- The conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid y]:= \begin{cases}\sum_{x \in \mathbb{R}} x p(x \mid y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{+\infty} x f(x \mid y) \mathrm{d} x, & \text { if } X \text { is continuous }\end{cases}
$$

- The conditional variance of X given $Y=y$ is

$$
\operatorname{Var}(X \mid y):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2} \mid y\right]=\mathbb{E}\left[X^{2} \mid y\right]-(\mathbb{E}[X \mid y])^{2} .
$$

- If $X \not \perp Y$, then $\mathbb{E}[X \mid y]$ and $\operatorname{Var}(X \mid y)$ are functions of y.

Expectations

- The conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid y]:= \begin{cases}\sum_{x \in \mathbb{R}} x p(x \mid y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{+\infty} x f(x \mid y) \mathrm{d} x, & \text { if } X \text { is continuous. }\end{cases}
$$

- The conditional variance of X given $Y=y$ is

$$
\operatorname{Var}(X \mid y):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2} \mid y\right]=\mathbb{E}\left[X^{2} \mid y\right]-(\mathbb{E}[X \mid y])^{2} .
$$

- If $X \not \perp Y$, then $\mathbb{E}[X \mid y]$ and $\operatorname{Var}(X \mid y)$ are functions of y.
- If $X \not \perp Y$, then $\mathbb{E}[X \mid Y]$ and $\operatorname{Var}(X \mid Y)$ are also RVs, whose value depends on the value of Y.

Expectations

- The conditional expectation of X given $Y=y$ is

$$
\mathbb{E}[X \mid y]:= \begin{cases}\sum_{x \in \mathbb{R}} x p(x \mid y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{+\infty} x f(x \mid y) \mathrm{d} x, & \text { if } X \text { is continuous. }\end{cases}
$$

- The conditional variance of X given $Y=y$ is

$$
\operatorname{Var}(X \mid y):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2} \mid y\right]=\mathbb{E}\left[X^{2} \mid y\right]-(\mathbb{E}[X \mid y])^{2} .
$$

- If $X \not \perp Y$, then $\mathbb{E}[X \mid y]$ and $\operatorname{Var}(X \mid y)$ are functions of y.
- If $X \not \perp Y$, then $\mathbb{E}[X \mid Y]$ and $\operatorname{Var}(X \mid Y)$ are also RVs, whose value depends on the value of Y.
- If $X \perp Y$, then $\mathbb{E}[X \mid y]=\mathbb{E}[X \mid Y]=\mathbb{E}[X]$, and $\operatorname{Var}(X \mid y)=$ $\operatorname{Var}(X \mid Y)=\operatorname{Var}(X)$.

Expectations

- $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.

Expectations

- $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)$.

Expectations

- $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)$.
- $\operatorname{Cov}(a X+b Y, c W+d V)=a c \operatorname{Cov}(X, W)+$ $a d \operatorname{Cov}(X, V)+b c \operatorname{Cov}(Y, W)+b d \operatorname{Cov}(Y, V)$.

Expectations

- $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)$.
- $\operatorname{Cov}(a X+b Y, c W+d V)=a c \operatorname{Cov}(X, W)+$ $a d \operatorname{Cov}(X, V)+b c \operatorname{Cov}(Y, W)+b d \operatorname{Cov}(Y, V)$.
- $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.

Expectations

- $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)$.
- $\operatorname{Cov}(a X+b Y, c W+d V)=a c \operatorname{Cov}(X, W)+$ $a d \operatorname{Cov}(X, V)+b c \operatorname{Cov}(Y, W)+b d \operatorname{Cov}(Y, V)$.
- $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.
- $\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbb{E}[X \mid Y])$.

Expectations

- $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)$.
- $\operatorname{Cov}(a X+b Y, c W+d V)=a c \operatorname{Cov}(X, W)+$ $a d \operatorname{Cov}(X, V)+b c \operatorname{Cov}(Y, W)+b d \operatorname{Cov}(Y, V)$.
- $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$.
- $\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbb{E}[X \mid Y])$.
- If $X \perp Y$, then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

(1) Probability Space

(2) Random Variables \& Distributions

(3) Expectations

4 Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

Common Distributions

- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

Common Distributions

- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.

Common Distributions

- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.
- The value $X=1$ is often termed a "success" and p is referred to as the success probability.
- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.
- The value $X=1$ is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n, p)$ or $\mathrm{B}(n, p)$: The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.
- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.
- The value $X=1$ is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n, p)$ or $\mathrm{B}(n, p)$: The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.
- $Y=\sum_{i=1}^{n} X_{i}$, where $X_{i} \sim \operatorname{Ber}(p)$ are iid.
- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.
- The value $X=1$ is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n, p)$ or $\mathrm{B}(n, p)$: The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.
- $Y=\sum_{i=1}^{n} X_{i}$, where $X_{i} \sim \operatorname{Ber}(p)$ are iid.
- $p(y)=\mathbb{P}(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \quad y=0,1, \ldots, n$.
- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.
- The value $X=1$ is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n, p)$ or $\mathrm{B}(n, p)$: The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.
- $Y=\sum_{i=1}^{n} X_{i}$, where $X_{i} \sim \operatorname{Ber}(p)$ are iid.
- $p(y)=\mathbb{P}(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \quad y=0,1, \ldots, n$.
- $\mathbb{E}[Y]=n p, \operatorname{Var}(Y)=n p(1-p)$.
- $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$
X=\left\{\begin{array}{ll}
1, & \text { with probability } p, \\
0, & \text { with probability } 1-p,
\end{array} \quad p \in[0,1] .\right.
$$

- $\mathbb{E}[X]=p, \operatorname{Var}(X)=p(1-p)$.
- The value $X=1$ is often termed a "success" and p is referred to as the success probability.
- $Y \sim \operatorname{binomial}(n, p)$ or $\mathrm{B}(n, p)$: The number of successes among n (mutually) independent and identically distributed (iid) $\operatorname{Ber}(p)$ trials.
- $Y=\sum_{i=1}^{n} X_{i}$, where $X_{i} \sim \operatorname{Ber}(p)$ are iid.
- $p(y)=\mathbb{P}(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \quad y=0,1, \ldots, n$.
- $\mathbb{E}[Y]=n p, \operatorname{Var}(Y)=n p(1-p)$.
- If $Y_{1} \sim \mathrm{~B}\left(n_{1}, p\right)$ and $Y_{2} \sim \mathrm{~B}\left(n_{2}, p\right)$ are independent, then $Y_{1}+Y_{2} \sim \mathrm{~B}\left(n_{1}+n_{2}, p\right)$.

Common Distributions

- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.

Common Distributions

- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.

Common Distributions

- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.
- $\mathbb{E}[Y]=r+r(1-p) / p, \operatorname{Var}(Y)=r(1-p) / p^{2}$.
- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.
- $\mathbb{E}[Y]=r+r(1-p) / p, \operatorname{Var}(Y)=r(1-p) / p^{2}$.
- When $r=1$, it becomes the geometric distribution.
- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.
- $\mathbb{E}[Y]=r+r(1-p) / p, \operatorname{Var}(Y)=r(1-p) / p^{2}$.
- When $r=1$, it becomes the geometric distribution.
- $Y \sim \operatorname{geometric}(p)$ or $\operatorname{Geo}(p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain the first success.
- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.
- $\mathbb{E}[Y]=r+r(1-p) / p, \operatorname{Var}(Y)=r(1-p) / p^{2}$.
- When $r=1$, it becomes the geometric distribution.
- $Y \sim \operatorname{geometric}(p)$ or $\operatorname{Geo}(p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain the first success.
- $p(y)=\mathbb{P}(Y=y)=p(1-p)^{y-1}, \quad y=1,2, \ldots$.
- $\mathbb{E}[Y]=1 / p, \operatorname{Var}(Y)=(1-p) / p^{2}$.
- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.
- $\mathbb{E}[Y]=r+r(1-p) / p, \operatorname{Var}(Y)=r(1-p) / p^{2}$.
- When $r=1$, it becomes the geometric distribution.
- $Y \sim \operatorname{geometric}(p)$ or $\operatorname{Geo}(p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain the first success.
- $p(y)=\mathbb{P}(Y=y)=p(1-p)^{y-1}, \quad y=1,2, \ldots$.
- $\mathbb{E}[Y]=1 / p, \operatorname{Var}(Y)=(1-p) / p^{2}$.
- Memoryless Property: For integers $s>t$,

$$
\begin{aligned}
\mathbb{P}(Y>s \mid Y>t) & =\frac{\mathbb{P}(Y>s, Y>t)}{\mathbb{P}(Y>t)}=\frac{\mathbb{P}(Y>s)}{\mathbb{P}(Y>t)}=\frac{(1-p)^{s}}{(1-p)^{t}}=(1-p)^{s-t} \\
& =\mathbb{P}(X>s-t)
\end{aligned}
$$

- $Y \sim$ negative binomial (r, p) or $\mathrm{NB}(r, p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain r successes.
- $p(y)=\mathbb{P}(Y=y)=\binom{y-1}{r-1} p^{r}(1-p)^{y-r}, \quad y=r, r+1, \ldots$.
- $\mathbb{E}[Y]=r+r(1-p) / p, \operatorname{Var}(Y)=r(1-p) / p^{2}$.
- When $r=1$, it becomes the geometric distribution.
- $Y \sim \operatorname{geometric}(p)$ or $\operatorname{Geo}(p)$: The number of iid $\operatorname{Ber}(p)$ trials to obtain the first success.
- $p(y)=\mathbb{P}(Y=y)=p(1-p)^{y-1}, \quad y=1,2, \ldots$.
- $\mathbb{E}[Y]=1 / p, \operatorname{Var}(Y)=(1-p) / p^{2}$.
- Memoryless Property: For integers $s>t$,

$$
\begin{aligned}
\mathbb{P}(Y>s \mid Y>t) & =\frac{\mathbb{P}(Y>s, Y>t)}{\mathbb{P}(Y>t)}=\frac{\mathbb{P}(Y>s)}{\mathbb{P}(Y>t)}=\frac{(1-p)^{s}}{(1-p)^{t}}=(1-p)^{s-t} \\
& =\mathbb{P}(X>s-t)
\end{aligned}
$$

- If $Y_{1} \sim \mathrm{NB}\left(r_{1}, p\right)$ and $Y_{2} \sim \mathrm{NB}\left(r_{2}, p\right)$ are independent, then $Y_{1}+Y_{2} \sim \mathrm{NB}\left(r_{1}+r_{2}, p\right)$.

Common Distributions

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval. ${ }^{\dagger}$

[^7]- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval. ${ }^{\dagger}$
- $X \sim \operatorname{Poisson}(\lambda)$ or $\operatorname{Pois}(\lambda)$, with $\lambda>0$, if

$$
p(x)=\mathbb{P}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1, \ldots
$$

[^8]- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval. ${ }^{\dagger}$
- $X \sim \operatorname{Poisson}(\lambda)$ or $\operatorname{Pois}(\lambda)$, with $\lambda>0$, if

$$
p(x)=\mathbb{P}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1, \ldots
$$

- It can be verified that $\sum_{x=0}^{\infty} p(x)=1$.

[^9]- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval. ${ }^{\dagger}$
- $X \sim \operatorname{Poisson}(\lambda)$ or $\operatorname{Pois}(\lambda)$, with $\lambda>0$, if

$$
p(x)=\mathbb{P}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1, \ldots
$$

- It can be verified that $\sum_{x=0}^{\infty} p(x)=1$.
- $\mathbb{E}[X]=\lambda, \operatorname{Var}(X)=\lambda$.

[^10]- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval. ${ }^{\dagger}$
- $X \sim \operatorname{Poisson}(\lambda)$ or $\operatorname{Pois}(\lambda)$, with $\lambda>0$, if

$$
p(x)=\mathbb{P}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1, \ldots
$$

- It can be verified that $\sum_{x=0}^{\infty} p(x)=1$.
- $\mathbb{E}[X]=\lambda, \operatorname{Var}(X)=\lambda$.
- If $X_{1} \sim \operatorname{Pois}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Pois}\left(\lambda_{2}\right)$ are independent,
- $X_{1}+X_{2} \sim \operatorname{Pois}\left(\lambda_{1}+\lambda_{2}\right)$;
- Given $X_{1}+X_{2}=n, X_{1} \sim \mathrm{~B}\left(n, \lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)\right)$.

[^11]- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

- $\mathbb{E}[X]=\frac{b+a}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.

Common Distributions

- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b], \\ 0, & \text { otherwise } .\end{cases}
$$

- $\mathbb{E}[X]=\frac{b+a}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda>0$, if its pdf is given by

$$
f(x)=\lambda e^{-\lambda x}, \quad x \in[0, \infty)
$$

Common Distributions

- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

- $\mathbb{E}[X]=\frac{b+a}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda>0$, if its pdf is given by

$$
f(x)=\lambda e^{-\lambda x}, \quad x \in[0, \infty)
$$

- λ is called the rate parameter.

Common Distributions

- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

- $\mathbb{E}[X]=\frac{b+a}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda>0$, if its pdf is given by

$$
f(x)=\lambda e^{-\lambda x}, \quad x \in[0, \infty)
$$

- λ is called the rate parameter.
- $F(x)=1-e^{-\lambda x}, \mathbb{P}(X>x)=1-F(x)=e^{-\lambda x}$.

Common Distributions

- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise } .\end{cases}
$$

- $\mathbb{E}[X]=\frac{b+a}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda>0$, if its pdf is given by

$$
f(x)=\lambda e^{-\lambda x}, \quad x \in[0, \infty)
$$

- λ is called the rate parameter.
- $F(x)=1-e^{-\lambda x}, \mathbb{P}(X>x)=1-F(x)=e^{-\lambda x}$.
- $\mathbb{E}[X]=1 / \lambda, \operatorname{Var}(X)=1 / \lambda^{2}$.
- $X \sim \operatorname{Uniform}(a, b)$ or $\operatorname{Unif}(a, b)$ with $a<b$, if its pdf is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } x \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

- $\mathbb{E}[X]=\frac{b+a}{2}, \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.
- $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda>0$, if its pdf is given by

$$
f(x)=\lambda e^{-\lambda x}, \quad x \in[0, \infty)
$$

- λ is called the rate parameter.
- $F(x)=1-e^{-\lambda x}, \mathbb{P}(X>x)=1-F(x)=e^{-\lambda x}$.
- $\mathbb{E}[X]=1 / \lambda, \operatorname{Var}(X)=1 / \lambda^{2}$.
- Memoryless Property: For $s>t \geq 0$,

$$
\begin{aligned}
\mathbb{P}(X>s \mid X>t) & =\frac{\mathbb{P}(X>s, X>t)}{\mathbb{P}(X>t)}=\frac{\mathbb{P}(X>s)}{\mathbb{P}(X>t)}=\frac{e^{-\lambda s}}{e^{-\lambda t}}=e^{-\lambda(s-t)} \\
& =\mathbb{P}(X>s-t) .
\end{aligned}
$$

Common Distributions

- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha>0, Y:=X^{1 / \alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape \& scale parametrization with $\beta=(1 / \lambda)^{1 / \alpha}$, whose pdf is

$$
f(y)=\alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y / \beta)^{\alpha}}, \quad y \in(0, \infty)
$$

- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha>0, Y:=X^{1 / \alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape \& scale parametrization with $\beta=(1 / \lambda)^{1 / \alpha}$, whose pdf is

$$
f(y)=\alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y / \beta)^{\alpha}}, \quad y \in(0, \infty)
$$

- Erlang (k, λ) or $\operatorname{Erl}(k, \lambda)$, with k being a positive integer, is a generalized version of $\operatorname{Exp}(\lambda)$, whose pdf is

$$
f(x)=\frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in[0, \infty) .
$$

- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha>0, Y:=X^{1 / \alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape \& scale parametrization with $\beta=(1 / \lambda)^{1 / \alpha}$, whose pdf is

$$
f(y)=\alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y / \beta)^{\alpha}}, \quad y \in(0, \infty)
$$

- Erlang (k, λ) or $\operatorname{Erl}(k, \lambda)$, with k being a positive integer, is a generalized version of $\underset{\lambda^{k}}{\operatorname{Exp}}(\lambda)$, whose pdf is

$$
f(x)=\frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=k / \lambda, \operatorname{Var}(X)=k / \lambda^{2}$.
- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha>0, Y:=X^{1 / \alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape \& scale parametrization with $\beta=(1 / \lambda)^{1 / \alpha}$, whose pdf is

$$
f(y)=\alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y / \beta)^{\alpha}}, \quad y \in(0, \infty)
$$

- Erlang (k, λ) or $\operatorname{Erl}(k, \lambda)$, with k being a positive integer, is a generalized version of $\underset{\lambda^{k}}{\operatorname{Exp}}(\lambda)$, whose pdf is

$$
f(x)=\frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=k / \lambda, \operatorname{Var}(X)=k / \lambda^{2}$.
- $k=1 \Longrightarrow \operatorname{Exp}(\lambda)$.
- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha>0, Y:=X^{1 / \alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape \& scale parametrization with $\beta=(1 / \lambda)^{1 / \alpha}$, whose pdf is

$$
f(y)=\alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y / \beta)^{\alpha}}, \quad y \in(0, \infty)
$$

- $\operatorname{Erlang}(k, \lambda)$ or $\operatorname{Erl}(k, \lambda)$, with k being a positive integer, is a generalized version of $\underset{\lambda^{k}}{\operatorname{Exp}}(\lambda)$, whose pdf is

$$
f(x)=\frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=k / \lambda, \operatorname{Var}(X)=k / \lambda^{2}$.
- $k=1 \Longrightarrow \operatorname{Exp}(\lambda)$.
- If $X_{1} \sim \operatorname{Erl}\left(k_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Erl}\left(k_{2}, \lambda\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Erl}\left(k_{1}+k_{2}, \lambda\right)$.
- If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then $\min \left\{X_{1}, X_{2}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\lambda_{2}\right)$.
- If $X \sim \operatorname{Exp}(\lambda)$, then for $\alpha>0, Y:=X^{1 / \alpha} \sim \operatorname{Weibull}(\alpha, \beta)$ in shape \& scale parametrization with $\beta=(1 / \lambda)^{1 / \alpha}$, whose pdf is

$$
f(y)=\alpha \beta^{-\alpha} y^{\alpha-1} e^{-(y / \beta)^{\alpha}}, \quad y \in(0, \infty)
$$

- $\operatorname{Erlang}(k, \lambda)$ or $\operatorname{Erl}(k, \lambda)$, with k being a positive integer, is a generalized version of $\underset{\lambda^{k}}{\operatorname{Exp}}(\lambda)$, whose pdf is

$$
f(x)=\frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=k / \lambda, \operatorname{Var}(X)=k / \lambda^{2}$.
- $k=1 \Longrightarrow \operatorname{Exp}(\lambda)$.
- If $X_{1} \sim \operatorname{Erl}\left(k_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Erl}\left(k_{2}, \lambda\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Erl}\left(k_{1}+k_{2}, \lambda\right)$.
- If $X \sim \operatorname{Erl}(k, \lambda)$, then $c X \sim \operatorname{Erl}(k, \lambda / c)$ for $c>0$.

Common Distributions

- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty) .
$$

Common Distributions

- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty) .
$$

- $\mathbb{E}[X]=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.

Common Distributions

- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.
- $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t$ is known as the gamma function.
- $\Gamma(\alpha+1)=\alpha \Gamma(\alpha) ; \Gamma(n)=(n-1)!$, for integer $n>0$.

Common Distributions

- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.
- $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t$ is known as the gamma function.
- $\Gamma(\alpha+1)=\alpha \Gamma(\alpha) ; \Gamma(n)=(n-1)!$, for integer $n>0$.
- If $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \lambda\right)$.
- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.
- $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t$ is known as the gamma function.
- $\Gamma(\alpha+1)=\alpha \Gamma(\alpha) ; \Gamma(n)=(n-1)!$, for integer $n>0$.
- If $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \lambda\right)$.
- If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then $c X \sim \operatorname{Gamma}(\alpha, \lambda / c)$ for $c>0$.
- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty)
$$

- $\mathbb{E}[X]=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.
- $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t$ is known as the gamma function.
- $\Gamma(\alpha+1)=\alpha \Gamma(\alpha) ; \Gamma(n)=(n-1)!$, for integer $n>0$.
- If $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \lambda\right)$.
- If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then $c X \sim \operatorname{Gamma}(\alpha, \lambda / c)$ for $c>0$.
- Important special cases of $\operatorname{Gamma}(\alpha, \lambda)$:
- α is an integer $\Longrightarrow \operatorname{Erl}(\alpha, \lambda) ; \alpha=1 \Longrightarrow \operatorname{Exp}(\lambda)$;

Common Distributions

- $X \sim \operatorname{Gamma}(\alpha, \lambda)$ in shape \& rate parametrization with $\alpha, \lambda>0$, if its pdf is given by

$$
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x \in[0, \infty) .
$$

- $\mathbb{E}[X]=\alpha / \lambda, \operatorname{Var}(X)=\alpha / \lambda^{2}$.
- $\Gamma(\alpha):=\int_{0}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t$ is known as the gamma function.
- $\Gamma(\alpha+1)=\alpha \Gamma(\alpha) ; \Gamma(n)=(n-1)!$, for integer $n>0$.
- If $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \lambda\right)$.
- If $X \sim \operatorname{Gamma}(\alpha, \lambda)$, then $c X \sim \operatorname{Gamma}(\alpha, \lambda / c)$ for $c>0$.
- Important special cases of $\operatorname{Gamma}(\alpha, \lambda)$:
- α is an integer $\Longrightarrow \operatorname{Erl}(\alpha, \lambda) ; \alpha=1 \Longrightarrow \operatorname{Exp}(\lambda)$;
- $\alpha=p / 2$, where p is an integer, and $\lambda=1 / 2 \Longrightarrow$ chi-square distribution with p degrees of freedom, denoted as χ_{p}^{2}.

Common Distributions

- Beta distribution is a very flexible distribution that in a finite interval.

Common Distributions

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\alpha, \beta>0$, if its pdf is given by

$$
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, x \in[0,1] .
$$

Common Distributions

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\alpha, \beta>0$, if its pdf is given by

$$
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, x \in[0,1] .
$$

- $\mathbb{E}[X]=\alpha /(\alpha+\beta), \operatorname{Var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.
- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\alpha, \beta>0$, if its pdf is given by

$$
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, x \in[0,1] .
$$

- $\mathbb{E}[X]=\alpha /(\alpha+\beta), \operatorname{Var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.
- $B(\alpha, \beta):=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t$ is known as the beta function.
- $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

Common Distributions

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\alpha, \beta>0$, if its pdf is given by

$$
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, x \in[0,1] .
$$

- $\mathbb{E}[X]=\alpha /(\alpha+\beta), \operatorname{Var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.
- $B(\alpha, \beta):=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t$ is known as the beta function.
- $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$.
- The $\operatorname{Beta}(\alpha, \beta) \mathrm{pdf}$ is quite flexible
- $\alpha=1, \beta=1 \Longrightarrow \operatorname{Unif}(0,1)$
- $\alpha>1, \beta=1 \Longrightarrow$ strictly increasing
- $\alpha=1, \beta>1 \Longrightarrow$ strictly decreasing
- $\alpha<1, \beta<1 \Longrightarrow$ U-shaped
- $\alpha>1, \beta>1 \Longrightarrow$ unimodal

- $X \sim$ Student's t distribution with p degrees of freedom, denoted as t_{p}, where p is an integer, if its pdf is given by

$$
f(x)=\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+x^{2} / p\right)^{(p+1) / 2}}, x \in \mathbb{R}
$$

- $X \sim$ Student's t distribution with p degrees of freedom, denoted as t_{p}, where p is an integer, if its pdf is given by

$$
f(x)=\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+x^{2} / p\right)^{(p+1) / 2}}, x \in \mathbb{R}
$$

- $\mathbb{E}[X]=0$ if $p>1$;
- $X \sim$ Student's t distribution with p degrees of freedom, denoted as t_{p}, where p is an integer, if its pdf is given by

$$
f(x)=\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+x^{2} / p\right)^{(p+1) / 2}}, x \in \mathbb{R}
$$

- $\mathbb{E}[X]=0$ if $p>1$;
- $\operatorname{Var}(X)=p /(p-2)$ if $p>2$.
- $X \sim$ Student's t distribution with p degrees of freedom, denoted as t_{p}, where p is an integer, if its pdf is given by

$$
f(x)=\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+x^{2} / p\right)^{(p+1) / 2}}, x \in \mathbb{R}
$$

- $\mathbb{E}[X]=0$ if $p>1$;
- $\operatorname{Var}(X)=p /(p-2)$ if $p>2$.
- t_{1} is also known as the standard Cauchy distribution, or Cauchy $(0,1)$, whose pdf is simply

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, x \in \mathbb{R}
$$

Common Distributions

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^{2}, denoted as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with $\sigma>0$, if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^{2}, denoted as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with $\sigma>0$, if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

- $\mathbb{E}[X]=\mu, \operatorname{Var}(X)=\sigma^{2}$.
- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^{2}, denoted as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with $\sigma>0$, if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

- $\mathbb{E}[X]=\mu, \operatorname{Var}(X)=\sigma^{2}$.
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z:=(X-\mu) / \sigma \sim \mathcal{N}(0,1)$.
- Z is also known as the standard normal RV.
- We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.
- $\mathbb{P}(X \leq x)=\Phi((x-\mu) / \sigma)$.
- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^{2}, denoted as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with $\sigma>0$, if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

- $\mathbb{E}[X]=\mu, \operatorname{Var}(X)=\sigma^{2}$.
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z:=(X-\mu) / \sigma \sim \mathcal{N}(0,1)$.
- Z is also known as the standard normal RV.
- We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.
- $\mathbb{P}(X \leq x)=\Phi((x-\mu) / \sigma)$.
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $a+b X \sim \mathcal{N}\left(a+b \mu, b^{2} \sigma^{2}\right)$ for $b>0$.
- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^{2}, denoted as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with $\sigma>0$, if its pdf is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

- $\mathbb{E}[X]=\mu, \operatorname{Var}(X)=\sigma^{2}$.
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Z:=(X-\mu) / \sigma \sim \mathcal{N}(0,1)$.
- Z is also known as the standard normal RV.
- We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.
- $\mathbb{P}(X \leq x)=\Phi((x-\mu) / \sigma)$.
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $a+b X \sim \mathcal{N}\left(a+b \mu, b^{2} \sigma^{2}\right)$ for $b>0$.
- If $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ are independent, then $X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.

Proof. Let $Y:=Z^{2}$. For $y \in[0, \infty)$,
$\mathbb{P}(Y \leq y)=\mathbb{P}\left(Z^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq Z \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) \mathrm{d} t=: F(y)$.

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.

Proof. Let $Y:=Z^{2}$. For $y \in[0, \infty)$,

$$
\mathbb{P}(Y \leq y)=\mathbb{P}\left(Z^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq Z \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) \mathrm{d} t=: F(y) .
$$

Then,

$$
f(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F(y)=\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}-\phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y}(-\sqrt{y})
$$

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.

Proof. Let $Y:=Z^{2}$. For $y \in[0, \infty)$,

$$
\mathbb{P}(Y \leq y)=\mathbb{P}\left(Z^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq Z \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) \mathrm{d} t=: F(y) .
$$

Then,

$$
\begin{aligned}
f(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} F(y)=\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}-\phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y}(-\sqrt{y}) \\
& =2 \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}} .
\end{aligned}
$$

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.

Proof. Let $Y:=Z^{2}$. For $y \in[0, \infty)$,

$$
\mathbb{P}(Y \leq y)=\mathbb{P}\left(Z^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq Z \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) \mathrm{d} t=: F(y)
$$

Then,

$$
\begin{aligned}
f(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} F(y)=\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}-\phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y}(-\sqrt{y}) \\
& =2 \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}} .
\end{aligned}
$$

If $Y \sim \chi_{1}^{2}$, i.e., $Y \sim \operatorname{Gamma}(1 / 2,1 / 2)$, it means its pdf is

$$
f(y)=\frac{1}{\sqrt{2} \Gamma\left(\frac{1}{2}\right)} y^{-\frac{1}{2}} e^{-\frac{y}{2}}
$$

- If $Z \sim \mathcal{N}(0,1)$, then $Z^{2} \sim \chi_{1}^{2}$.

Proof. Let $Y:=Z^{2}$. For $y \in[0, \infty)$,

$$
\mathbb{P}(Y \leq y)=\mathbb{P}\left(Z^{2} \leq y\right)=\mathbb{P}(-\sqrt{y} \leq Z \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) \mathrm{d} t=: F(y) .
$$

Then,

$$
\begin{aligned}
f(y) & =\frac{\mathrm{d}}{\mathrm{~d} y} F(y)=\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}-\phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y}(-\sqrt{y}) \\
& =2 \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{~d} y} \sqrt{y}=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}} .
\end{aligned}
$$

If $Y \sim \chi_{1}^{2}$, i.e., $Y \sim \operatorname{Gamma}(1 / 2,1 / 2)$, it means its $p d f$ is

$$
f(y)=\frac{1}{\sqrt{2} \Gamma\left(\frac{1}{2}\right)} y^{-\frac{1}{2}} e^{-\frac{y}{2}} .
$$

The proof is completed by showing that $\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} \mathrm{~d} t=\sqrt{\pi}$, which can be seen if we convert to polar coordinates.

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{p}^{2}$ are independent, then $\frac{Z}{\sqrt{V / p}} \sim t_{p}$.

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{p}^{2}$ are independent, then $\frac{Z}{\sqrt{V / p}} \sim t_{p}$.

Proof. Since $V \sim \chi_{p}^{2}$, by definition, its pdf is

$$
f_{V}(v)=\frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} v^{\frac{p}{2}-1} e^{-\frac{1}{2} v}, \quad v \in[0, \infty) .
$$

Common Distributions

- If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{p}^{2}$ are independent, then $\frac{Z}{\sqrt{V / p}} \sim t_{p}$.

Proof. Since $V \sim \chi_{p}^{2}$, by definition, its pdf is

$$
f_{V}(v)=\frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} v^{\frac{p}{2}-1} e^{-\frac{1}{2} v}, \quad v \in[0, \infty)
$$

Let $Y:=\sqrt{V / p}$. For $y \in[0, \infty)$,
$f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} \mathbb{P}(Y \leq y)=\frac{\mathrm{d}}{\mathrm{d} y} \mathbb{P}\left(V \leq p y^{2}\right)=\frac{\mathrm{d}}{\mathrm{d} y} \int_{0}^{p y^{2}} f_{V}(v) \mathrm{d} v=2 p y f_{V}\left(p y^{2}\right)$.

- If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{p}^{2}$ are independent, then $\frac{Z}{\sqrt{V / p}} \sim t_{p}$.

Proof. Since $V \sim \chi_{p}^{2}$, by definition, its pdf is

$$
f_{V}(v)=\frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} v^{\frac{p}{2}-1} e^{-\frac{1}{2} v}, \quad v \in[0, \infty)
$$

Let $Y:=\sqrt{V / p}$. For $y \in[0, \infty)$,
$f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} \mathbb{P}(Y \leq y)=\frac{\mathrm{d}}{\mathrm{d} y} \mathbb{P}\left(V \leq p y^{2}\right)=\frac{\mathrm{d}}{\mathrm{d} y} \int_{0}^{p y^{2}} f_{V}(v) \mathrm{d} v=2 p y f_{V}\left(p y^{2}\right)$.
Let $T:=\frac{Z}{\sqrt{V / p}}=\frac{Z}{Y}$. For $t \in \mathbb{R}$,

$$
\begin{equation*}
\mathbb{P}(T \leq t)=\mathbb{P}\left(\frac{Z}{Y} \leq t\right)=\mathbb{P}(Z \leq t Y)=\int_{0}^{\infty} \mathbb{P}(Z \leq t y) f_{Y}(y) \mathrm{d} y . \tag{Why?}
\end{equation*}
$$

- If $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{p}^{2}$ are independent, then $\frac{Z}{\sqrt{V / p}} \sim t_{p}$.

Proof. Since $V \sim \chi_{p}^{2}$, by definition, its pdf is

$$
f_{V}(v)=\frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} v^{\frac{p}{2}-1} e^{-\frac{1}{2} v}, \quad v \in[0, \infty) .
$$

Let $Y:=\sqrt{V / p}$. For $y \in[0, \infty)$,
$f_{Y}(y)=\frac{\mathrm{d}}{\mathrm{d} y} \mathbb{P}(Y \leq y)=\frac{\mathrm{d}}{\mathrm{d} y} \mathbb{P}\left(V \leq p y^{2}\right)=\frac{\mathrm{d}}{\mathrm{d} y} \int_{0}^{p y^{2}} f_{V}(v) \mathrm{d} v=2 p y f_{V}\left(p y^{2}\right)$.
Let $T:=\frac{Z}{\sqrt{V / p}}=\frac{Z}{Y}$. For $t \in \mathbb{R}$,

$$
\begin{equation*}
\mathbb{P}(T \leq t)=\mathbb{P}\left(\frac{Z}{Y} \leq t\right)=\mathbb{P}(Z \leq t Y)=\int_{0}^{\infty} \mathbb{P}(Z \leq t y) f_{Y}(y) \mathrm{d} y . \tag{Why?}
\end{equation*}
$$

Then,

$$
f_{T}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{P}(T \leq t)=\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{P}(Z \leq t y) f_{Y}(y) \mathrm{d} y .
$$

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$.

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$. So,

$$
f_{T}(t)=\int_{0}^{\infty} y \phi(t y) f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y \phi(t y) 2 p y f_{V}\left(p y^{2}\right) \mathrm{d} y
$$

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$. So,

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} y \phi(t y) f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y \phi(t y) 2 p y f_{V}\left(p y^{2}\right) \mathrm{d} y \\
& =\int_{0}^{\infty} 2 p y^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2} y^{2}}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)}\left(p y^{2}\right)^{\frac{p}{2}-1} e^{-\frac{1}{2} p y^{2}} \mathrm{~d} y
\end{aligned}
$$

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$. So,

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} y \phi(t y) f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y \phi(t y) 2 p y f_{V}\left(p y^{2}\right) \mathrm{d} y \\
& =\int_{0}^{\infty} 2 p y^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2} y^{2}}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)}\left(p y^{2}\right)^{\frac{p}{2}-1} e^{-\frac{1}{2} p y^{2}} \mathrm{~d} y \\
& =\frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y .
\end{aligned}
$$

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$. So,

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} y \phi(t y) f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y \phi(t y) 2 p y f_{V}\left(p y^{2}\right) \mathrm{d} y \\
& =\int_{0}^{\infty} 2 p y^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2} y^{2}}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)}\left(p y^{2}\right)^{\frac{p}{2}-1} e^{-\frac{1}{2} p y^{2}} \mathrm{~d} y \\
& =\frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y .
\end{aligned}
$$

Let $x:=y^{2}$. Then, integration by substitution shows that

$$
\int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y=\frac{1}{2} \int_{0}^{\infty} x^{\frac{p-1}{2}} e^{-\frac{1}{2}\left(t^{2}+p\right) x} \mathrm{~d} x=: \frac{1}{2} \int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x
$$

where $\alpha:=\frac{p+1}{2}$ and $\lambda:=\frac{1}{2}\left(t^{2}+p\right)$.

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$. So,

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} y \phi(t y) f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y \phi(t y) 2 p y f_{V}\left(p y^{2}\right) \mathrm{d} y \\
& =\int_{0}^{\infty} 2 p y^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2} y^{2}}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)}\left(p y^{2}\right)^{\frac{p}{2}-1} e^{-\frac{1}{2} p y^{2}} \mathrm{~d} y \\
& =\frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y .
\end{aligned}
$$

Let $x:=y^{2}$. Then, integration by substitution shows that

$$
\int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y=\frac{1}{2} \int_{0}^{\infty} x^{\frac{p-1}{2}} e^{-\frac{1}{2}\left(t^{2}+p\right) x} \mathrm{~d} x=: \frac{1}{2} \int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x,
$$

where $\alpha:=\frac{p+1}{2}$ and $\lambda:=\frac{1}{2}\left(t^{2}+p\right)$. Recalling the pdf of $\Gamma(\alpha, \lambda)$, it is easy to see that $\int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x=\Gamma(\alpha) / \lambda^{\alpha}$.

Common Distributions

Proof. (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}(Z \leq t y)=\frac{\mathrm{d}}{\mathrm{d} t} \int_{-\infty}^{t y} \phi(z) \mathrm{d} z=y \phi(t y)$. So,

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} y \phi(t y) f_{Y}(y) \mathrm{d} y=\int_{0}^{\infty} y \phi(t y) 2 p y f_{V}\left(p y^{2}\right) \mathrm{d} y \\
& =\int_{0}^{\infty} 2 p y^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2} y^{2}}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)}\left(p y^{2}\right)^{\frac{p}{2}-1} e^{-\frac{1}{2} p y^{2}} \mathrm{~d} y \\
& =\frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y .
\end{aligned}
$$

Let $x:=y^{2}$. Then, integration by substitution shows that

$$
\int_{0}^{\infty} y^{p} e^{-\frac{1}{2}\left(t^{2}+p\right) y^{2}} \mathrm{~d} y=\frac{1}{2} \int_{0}^{\infty} x^{\frac{p-1}{2}} e^{-\frac{1}{2}\left(t^{2}+p\right) x} \mathrm{~d} x=: \frac{1}{2} \int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x,
$$

where $\alpha:=\frac{p+1}{2}$ and $\lambda:=\frac{1}{2}\left(t^{2}+p\right)$. Recalling the pdf of $\Gamma(\alpha, \lambda)$, it is easy to see that $\int_{0}^{\infty} x^{\alpha-1} e^{-\lambda x} \mathrm{~d} x=\Gamma(\alpha) / \lambda^{\alpha}$. Finally,

$$
\begin{aligned}
f_{T}(t) & =\frac{1}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \cdot \frac{1}{2} \frac{\Gamma\left(\frac{p+1}{2}\right)}{(1 / 2)^{(p+1) / 2}\left(t^{2}+p\right)^{(p+1) / 2}} \\
& =\frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{(p \pi)^{1 / 2}} \frac{1}{\left(1+t^{2} / p\right)^{(p+1) / 2}} .
\end{aligned}
$$

Common Distributions

- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.

Common Distributions

- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.
- \boldsymbol{X} is also called a (k dimensional) normal random vector.
- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.
- \boldsymbol{X} is also called a (k dimensional) normal random vector.
- If $k=2, \boldsymbol{X}=\left(X_{1}, X_{2}\right)^{\top}$ is also said to follow a bivariate normal distribution.
- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.
- \boldsymbol{X} is also called a (k dimensional) normal random vector.
- If $k=2, \boldsymbol{X}=\left(X_{1}, X_{2}\right)^{\top}$ is also said to follow a bivariate normal distribution.
- $\boldsymbol{X} \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its joint pdf is given by

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{k / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \boldsymbol{x} \in \mathbb{R}^{k}
$$

where $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$.

- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.
- \boldsymbol{X} is also called a (k dimensional) normal random vector.
- If $k=2, \boldsymbol{X}=\left(X_{1}, X_{2}\right)^{\top}$ is also said to follow a bivariate normal distribution.
- $\boldsymbol{X} \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its joint pdf is given by

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{k / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \boldsymbol{x} \in \mathbb{R}^{k}
$$

where $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$.

- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\boldsymbol{\top}}=\mathbb{E}[\boldsymbol{X}]=\left(\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{k}\right]\right)^{\boldsymbol{\top}} \in \mathbb{R}^{k}$.
- $\boldsymbol{\Sigma}=\left(\Sigma_{i j}\right)=\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{X})=\left(\operatorname{Cov}\left(Z_{i}, Z_{j}\right)\right) \in \mathbb{R}^{k \times k}$.
- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.
- \boldsymbol{X} is also called a (k dimensional) normal random vector.
- If $k=2, \boldsymbol{X}=\left(X_{1}, X_{2}\right)^{\top}$ is also said to follow a bivariate normal distribution.
- $\boldsymbol{X} \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its joint pdf is given by

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{k / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \boldsymbol{x} \in \mathbb{R}^{k}
$$

where $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$.

- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\boldsymbol{\top}}=\mathbb{E}[\boldsymbol{X}]=\left(\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{k}\right]\right)^{\boldsymbol{\top}} \in \mathbb{R}^{k}$.
- $\boldsymbol{\Sigma}=\left(\Sigma_{i j}\right)=\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{X})=\left(\operatorname{Cov}\left(Z_{i}, Z_{j}\right)\right) \in \mathbb{R}^{k \times k}$.
- $\boldsymbol{\Sigma}$ is a symmetric and positive definite matrix.
- $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k}\right)^{\top}$ is said to follow a k-variate normal distribution, if every linear combination of X_{1}, \ldots, X_{k} follows a (univariate) normal distribution.
- \boldsymbol{X} is also called a (k dimensional) normal random vector.
- If $k=2, \boldsymbol{X}=\left(X_{1}, X_{2}\right)^{\top}$ is also said to follow a bivariate normal distribution.
- $\boldsymbol{X} \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its joint pdf is given by

$$
f(\boldsymbol{x})=\frac{1}{(2 \pi)^{k / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \boldsymbol{x} \in \mathbb{R}^{k}
$$

where $|\boldsymbol{\Sigma}|$ is the determinant of $\boldsymbol{\Sigma}$.

- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\boldsymbol{\top}}=\mathbb{E}[\boldsymbol{X}]=\left(\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{k}\right]\right)^{\boldsymbol{\top}} \in \mathbb{R}^{k}$.
- $\boldsymbol{\Sigma}=\left(\Sigma_{i j}\right)=\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{X})=\left(\operatorname{Cov}\left(Z_{i}, Z_{j}\right)\right) \in \mathbb{R}^{k \times k}$.
- $\boldsymbol{\Sigma}$ is a symmetric and positive definite matrix.
- $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right), i=1, \ldots, k$.
- If $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional, then
- $\boldsymbol{Z}:=\boldsymbol{A}^{-1}(\boldsymbol{X}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$, where \boldsymbol{A} satisfies $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ (Cholesky decomposition), $\mathbf{0} \in \mathbb{R}^{k}$, and $\boldsymbol{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
- If $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional, then
- $\boldsymbol{Z}:=\boldsymbol{A}^{-1}(\boldsymbol{X}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$, where \boldsymbol{A} satisfies $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ (Cholesky decomposition), $\mathbf{0} \in \mathbb{R}^{k}$, and $\boldsymbol{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
- $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{k}\right)^{\top}$, where $Z_{i} \sim \mathcal{N}(0,1), i=1, \ldots, k$, iid.
－If $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional，then
－ $\boldsymbol{Z}:=\boldsymbol{A}^{-1}(\boldsymbol{X}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ ，where \boldsymbol{A} satisfies $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ （Cholesky decomposition）， $\mathbf{0} \in \mathbb{R}^{k}$ ，and $\boldsymbol{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix．
－ $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{k}\right)^{\top}$ ，where $Z_{i} \sim \mathcal{N}(0,1), i=1, \ldots, k$ ，iid．
－ $\boldsymbol{a}+\boldsymbol{B} \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{a}+\boldsymbol{B} \boldsymbol{\mu}, \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{\top}\right) .^{\dagger}$

[^12]－If $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional，then
－ $\boldsymbol{Z}:=\boldsymbol{A}^{-1}(\boldsymbol{X}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ ，where \boldsymbol{A} satisfies $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ （Cholesky decomposition）， $\mathbf{0} \in \mathbb{R}^{k}$ ，and $\boldsymbol{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix．
－ $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{k}\right)^{\top}$ ，where $Z_{i} \sim \mathcal{N}(0,1), i=1, \ldots, k$ ，iid．
－ $\boldsymbol{a}+\boldsymbol{B} \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{a}+\boldsymbol{B} \boldsymbol{\mu}, \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{\top}\right) .^{\dagger}$
－Suppose \boldsymbol{X} is a k dimensional random vector．Then， $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ \qquad
There exist $\boldsymbol{\mu} \in \mathbb{R}^{k}$ and $\boldsymbol{A} \in \mathbb{R}^{k \times \ell}$ such that $\boldsymbol{X}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{Z}$ ， where $\boldsymbol{Z} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ with $\mathbf{0} \in \mathbb{R}^{\ell}$ and $\boldsymbol{I} \in \mathbb{R}^{\ell \times \ell}$ ．

[^13]－If $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional，then
－ $\boldsymbol{Z}:=\boldsymbol{A}^{-1}(\boldsymbol{X}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ ，where \boldsymbol{A} satisfies $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ （Cholesky decomposition）， $\mathbf{0} \in \mathbb{R}^{k}$ ，and $\boldsymbol{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix．
－ $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{k}\right)^{\top}$ ，where $Z_{i} \sim \mathcal{N}(0,1), i=1, \ldots, k$ ，iid．
－ $\boldsymbol{a}+\boldsymbol{B} \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{a}+\boldsymbol{B} \boldsymbol{\mu}, \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{\top}\right) .^{\dagger}$
－Suppose \boldsymbol{X} is a k dimensional random vector．Then， $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ \qquad
There exist $\boldsymbol{\mu} \in \mathbb{R}^{k}$ and $\boldsymbol{A} \in \mathbb{R}^{k \times \ell}$ such that $\boldsymbol{X}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{Z}$ ， where $\boldsymbol{Z} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ with $\mathbf{0} \in \mathbb{R}^{\ell}$ and $\boldsymbol{I} \in \mathbb{R}^{\ell \times \ell}$ ．
－Such \boldsymbol{A} must satisfy $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{\top}$ ．

[^14]
Common Distributions

- Bivariate normal distribution: $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{\top}$, and

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Cov}\left(X_{2}, X_{2}\right)
\end{array}\right]=:\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right],
$$

and the joint pdf is

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \\
& \times e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right] .} .
\end{aligned}
$$

Common Distributions

- Bivariate normal distribution: $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)^{\top}$, and

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Cov}\left(X_{2}, X_{2}\right)
\end{array}\right]=:\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right],
$$

and the joint pdf is

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \\
& \times e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right] .} .
\end{aligned}
$$

- To see $\rho=0 \Longrightarrow X_{1} \perp X_{2}$, let $\rho=0$, and note

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} e^{-\frac{1}{2}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right]} \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \times \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(x_{2}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
\end{aligned}
$$

- If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), i=1,2$, then $X_{1}+X_{2} \perp X_{1}-X_{2}$.
- If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), i=1,2$, then $X_{1}+X_{2} \perp X_{1}-X_{2}$.

Proof. Note that

$$
\boldsymbol{Y}:=\left[\begin{array}{l}
X_{1}+X_{2} \\
X_{1}-X_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=: \boldsymbol{B}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] .
$$

- If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), i=1,2$, then $X_{1}+X_{2} \perp X_{1}-X_{2}$.

Proof. Note that

$$
\boldsymbol{Y}:=\left[\begin{array}{l}
X_{1}+X_{2} \\
X_{1}-X_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=: \boldsymbol{B}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] .
$$

Since \boldsymbol{B} has full row rank, $\boldsymbol{Y} \sim \mathcal{N}\left(\boldsymbol{B} \boldsymbol{\mu}, \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{\boldsymbol{\top}}\right)$, which is non-degenerate.

- If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), i=1,2$, then $X_{1}+X_{2} \perp X_{1}-X_{2}$.

Proof. Note that

$$
\boldsymbol{Y}:=\left[\begin{array}{l}
X_{1}+X_{2} \\
X_{1}-X_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=: \boldsymbol{B}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] .
$$

Since \boldsymbol{B} has full row rank, $\boldsymbol{Y} \sim \mathcal{N}\left(\boldsymbol{B} \boldsymbol{\mu}, \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{\boldsymbol{\top}}\right)$, which is non-degenerate. Hence, to prove $X_{1}+X_{2} \perp X_{1}-X_{2}$, it suffices to show $\operatorname{Cov}\left(X_{1}+X_{2}, X_{1}-X_{2}\right)=0$.

- If $\left(X_{1}, X_{2}\right)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), i=1,2$, then $X_{1}+X_{2} \perp X_{1}-X_{2}$.

Proof. Note that

$$
\boldsymbol{Y}:=\left[\begin{array}{l}
X_{1}+X_{2} \\
X_{1}-X_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=: \boldsymbol{B}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] .
$$

Since \boldsymbol{B} has full row rank, $\boldsymbol{Y} \sim \mathcal{N}\left(\boldsymbol{B} \boldsymbol{\mu}, \boldsymbol{B} \boldsymbol{\Sigma} \boldsymbol{B}^{\boldsymbol{\top}}\right)$, which is non-degenerate. Hence, to prove $X_{1}+X_{2} \perp X_{1}-X_{2}$, it suffices to show $\operatorname{Cov}\left(X_{1}+X_{2}, X_{1}-X_{2}\right)=0$. Note that

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}+X_{2}, X_{1}-X_{2}\right) & =\operatorname{Cov}\left(X_{1}, X_{1}\right)-\operatorname{Cov}\left(X_{2}, X_{2}\right) \\
& =\sigma^{2}-\sigma^{2}=0
\end{aligned}
$$

Common Distributions

- There are many other relationships among various probability distributions.
- See, for example, Song (2005);
- Or, Leemis \& McQueston (2008) and their online interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

Figure: Relationships Among 35 Distributions (from Song (2005))

Figure: Relationships Among 76 Distributions (from Leemis \& McQueston (2008))

(1) Probability Space

(2) Random Variables \& Distributions
(3) Expectations

4 Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

Useful Inequalities

Markov's Inequality

Let X be a RV. If $\mathbb{P}(X \geq 0)=1$ and $\mathbb{P}(X=0)<1$, then, for any $r>0$,

$$
\mathbb{P}(X \geq r) \leq \frac{\mathbb{E}[X]}{r}
$$

with equality if and only if

$$
X= \begin{cases}r, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

Useful Inequalities

Markov's Inequality

Let X be a RV . If $\mathbb{P}(X \geq 0)=1$ and $\mathbb{P}(X=0)<1$, then, for any $r>0$,

$$
\mathbb{P}(X \geq r) \leq \frac{\mathbb{E}[X]}{r}
$$

with equality if and only if

$$
X= \begin{cases}r, & \text { with probability } p \\ 0, & \text { with probability } 1-p\end{cases}
$$

- Markov's Inequality has many variations, which are usually called Chebyshev's Inequality.

Useful Inequalities

Chebyshev's Inequality

Let X be a RV and $g(x)$ be a nonnegative function. Then, for any $r>0$,

$$
\mathbb{P}(g(X) \geq r) \leq \frac{\mathbb{E}[g(X)]}{r}
$$

Useful Inequalities

- Chebyshev's Inequality

Chebyshev's Inequality

Let X be a RV and $g(x)$ be a nonnegative function. Then, for any $r>0$,

$$
\mathbb{P}(g(X) \geq r) \leq \frac{\mathbb{E}[g(X)]}{r}
$$

Chebyshev's Inequality
Let X be a RV. Then, for any $r, p>0$,

$$
\begin{aligned}
& \mathbb{P}(|X| \geq r) \leq \frac{\mathbb{E}\left[|X|^{p}\right]}{r^{p}}, \\
& \mathbb{P}(|X-\mu| \geq r) \leq \frac{\sigma^{2}}{r^{2}},
\end{aligned}
$$

where $\mu:=\mathbb{E}[X]$, and $\sigma^{2}:=\operatorname{Var}(X)$.

Useful Inequalities

- Chebyshev's Inequality is typically very conservative.

Useful Inequalities

- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0,1)$, a tighter bound is available: For any $t>0$,

$$
\begin{aligned}
& 2 \Phi(-t)=\mathbb{P}(|Z| \geq t) \leq \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^{2} / 2}, \\
& 2 \Phi(-t)=\mathbb{P}(|Z| \geq t) \geq \sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2} / 2} .
\end{aligned}
$$

Useful Inequalities

- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0,1)$, a tighter bound is available: For any $t>0$,

$$
\begin{aligned}
& 2 \Phi(-t)=\mathbb{P}(|Z| \geq t) \leq \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^{2} / 2}, \\
& 2 \Phi(-t)=\mathbb{P}(|Z| \geq t) \geq \sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2} / 2} .
\end{aligned}
$$

Useful Inequalities

- A function $g(x)$ is convex if

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for all x and y, and $\lambda \in(0,1)$.

Useful Inequalities

- A function $g(x)$ is convex if

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for all x and y, and $\lambda \in(0,1)$.

- A function $g(x)$ is concave if $-g(x)$ is convex.

Useful Inequalities

- A function $g(x)$ is convex if

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for all x and y, and $\lambda \in(0,1)$.

- A function $g(x)$ is concave if $-g(x)$ is convex.

Jensen's Inequality

Let X be a RV. If $g(x)$ is a convex function, then

$$
\mathbb{E}[g(X)] \geq g(\mathbb{E}[X])
$$

with equality if and only if $g(x)$ is a linear function on some set A such that $\mathbb{P}(X \in A)=1$.

Useful Inequalities

Hölder's Inequality

Let X and Y be any two RV s, and let p and q be any two positive numbers (necessarily greater than 1) satisfying

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Then,

$$
|\mathbb{E}[X Y]| \leq \mathbb{E}[|X Y|] \leq\left\{\mathbb{E}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}\left[|Y|^{q}\right]\right\}^{1 / q} .
$$

Useful Inequalities

- Special Cases of Hölder's Inequality

Cauchy-Schwarz Inequality ($p=q=2$)
Let X and Y be any two RVs, then

$$
|\mathbb{E}[X Y]| \leq \mathbb{E}[|X Y|] \leq\left\{\mathbb{E}\left[|X|^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}\left[|Y|^{2}\right]\right\}^{1 / 2} .
$$

Useful Inequalities

- Special Cases of Hölder's Inequality

Cauchy-Schwarz Inequality ($p=q=2$)
Let X and Y be any two RV s, then

$$
|\mathbb{E}[X Y]| \leq \mathbb{E}[|X Y|] \leq\left\{\mathbb{E}\left[|X|^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}\left[|Y|^{2}\right]\right\}^{1 / 2} .
$$

Liapounov's Inequality $(Y \equiv 1)$
Let X be a RV, then for any $s>r>1$,

$$
\left\{\mathbb{E}\left[|X|^{r}\right]\right\}^{1 / r} \leq\left\{\mathbb{E}\left[|X|^{s}\right]\right\}^{1 / s}
$$

Useful Inequalities

- Minkowski's Inequality

Minkowski's Inequality
Let X and Y be any two RV s. Then, for $p \geq 1$,

$$
\left\{\mathbb{E}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{\mathbb{E}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{\mathbb{E}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

Useful Inequalities

Minkowski's Inequality
Let X and Y be any two RV s. Then, for $p \geq 1$,

$$
\left\{\mathbb{E}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{\mathbb{E}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{\mathbb{E}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

- Remark: The preceding Hölder's Inequality (including its special cases) and Minkowski's Inequality also apply to numerical sums where there is no explicit reference to an expectation.

(1) Probability Space

(2) Random Variables \& Distributions
(3) Expectations

4 Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

Convergence

Consider a sequence of RVs $\left\{X_{n}: n \geq 1\right\}$ and another RV X.

Convergence

Consider a sequence of RVs $\left\{X_{n}: n \geq 1\right\}$ and another RV X.

- Convergence Almost Surely (a.s.), $X_{n} \xrightarrow{\text { a.s. }} X$:

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

Convergence

Consider a sequence of RVs $\left\{X_{n}: n \geq 1\right\}$ and another RV X.

- Convergence Almost Surely (a.s.), $X_{n} \xrightarrow{\text { a.s. }} X$:

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

- Convergence in Probability, $X_{n} \xrightarrow{p} X$:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0, \text { for any } \epsilon>0
$$

Convergence

Consider a sequence of RVs $\left\{X_{n}: n \geq 1\right\}$ and another RV X.

- Convergence Almost Surely (a.s.), $X_{n} \xrightarrow{\text { a.s. }} X$:

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

- Convergence in Probability, $X_{n} \xrightarrow{p} X$:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0, \text { for any } \epsilon>0
$$

- Convergence in Distribution, $X_{n} \xrightarrow{d} X$ or $X_{n} \Rightarrow X$:

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x), \text { for any continuous point } x \text { of } F(x),
$$ where F_{n} and F are CDF of X_{n} and X, respectively.

Convergence

Consider a sequence of $\operatorname{RVs}\left\{X_{n}: n \geq 1\right\}$ and another RV X.

- Convergence Almost Surely (a.s.), $X_{n} \xrightarrow{\text { a.s. }} X$:

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

- Convergence in Probability, $X_{n} \xrightarrow{p} X$:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0, \text { for any } \epsilon>0
$$

- Convergence in Distribution, $X_{n} \xrightarrow{d} X$ or $X_{n} \Rightarrow X$:

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x), \text { for any continuous point } x \text { of } F(x),
$$

where F_{n} and F are CDF of X_{n} and X, respectively.

- Convergence in $L^{r} \operatorname{Norm}(r \in[1, \infty)), X_{n} \xrightarrow{L^{r}} X$:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|X_{n}-X\right|^{r}\right)=0
$$

given $\mathbb{E}\left[\left|X_{n}\right|^{r}\right]<\infty$ for any $n \geq 1$ and $\mathbb{E}\left[|X|^{r}\right]<\infty$.

Convergence

- Relationships

- Simple relationships:

$$
\begin{aligned}
X_{n} \xrightarrow{a . s .} X & \Longrightarrow X_{n} \xrightarrow{p} X \quad \Longrightarrow \quad X_{n} \Rightarrow X \\
X_{n} \xrightarrow{L^{s}} X & \stackrel{s>r \geq 1}{\Longrightarrow} X_{n} \xrightarrow{L^{r}} X \quad \Longrightarrow \quad \mathbb{E}\left[\left|X_{n}\right|^{r}\right] \rightarrow \mathbb{E}\left[|X|^{r}\right]
\end{aligned}
$$

Convergence

- Relationships

- Simple relationships:

$$
\begin{aligned}
X_{n} \xrightarrow{a . s .} X & \Longrightarrow X_{n} \xrightarrow{p} X \quad \Longrightarrow \quad X_{n} \Rightarrow X \\
X_{n} \xrightarrow{L^{s}} X & \stackrel{s>r \geq 1}{\Longrightarrow} X_{n} \xrightarrow{L^{r}} X \quad \Longrightarrow \quad \mathbb{E}\left[\left|X_{n}\right|^{r}\right] \rightarrow \mathbb{E}\left[|X|^{r}\right]
\end{aligned}
$$

- $X_{n} \Rightarrow$ a constant $c \quad \Longrightarrow \quad X_{n} \xrightarrow{p} c$.

Convergence

- Relationships

- Simple relationships:

$$
\begin{aligned}
X_{n} \xrightarrow{a . s .} X & \Longrightarrow X_{n} \xrightarrow{p} X \quad \Longrightarrow \quad X_{n} \Rightarrow X \\
X_{n} \xrightarrow{L^{s}} X & \stackrel{s>r \geq 1}{\Longrightarrow} X_{n} \xrightarrow{L^{r}} X \quad \Longrightarrow \quad \mathbb{E}\left[\left|X_{n}\right|^{r}\right] \rightarrow \mathbb{E}\left[|X|^{r}\right]
\end{aligned}
$$

- $X_{n} \Rightarrow$ a constant $c \quad \Longrightarrow \quad X_{n} \xrightarrow{p} c$.
- $X_{n} \xrightarrow{L^{1}} X \quad \Longrightarrow \quad \mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.

Convergence

- Relationships

- Simple relationships:

$$
\begin{aligned}
& X_{n} \xrightarrow{\text { a.s. }} X \quad \Longrightarrow \quad X_{n} \xrightarrow{p} X \quad \Longrightarrow \quad X_{n} \Rightarrow X \\
& X_{n} \xrightarrow{L^{s}} X \xrightarrow{s>r \geq 1} X_{n} \xrightarrow{L^{r}} X \quad \Longrightarrow \quad \mathbb{E}\left[\left|X_{n}\right|^{r}\right] \rightarrow \mathbb{E}\left[|X|^{r}\right]
\end{aligned}
$$

- $X_{n} \Rightarrow$ a constant $c \quad \Longrightarrow \quad X_{n} \xrightarrow{p} c$.
- $X_{n} \xrightarrow{L^{1}} X \quad \Longrightarrow \quad \mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.
- $X_{n} \xrightarrow{\text { a.s. }} X \Longleftrightarrow \sup _{j \geq n}\left|X_{j}-X\right| \xrightarrow{p} 0$.

Convergence

- Simple relationships:

$$
\begin{aligned}
X_{n} \xrightarrow{\text { a.s. }} X & \Longrightarrow X_{n} \xrightarrow{p} X \quad \Longrightarrow \quad X_{n} \Rightarrow X \\
X_{n} \xrightarrow{L^{s}} X & \stackrel{s>r \geq 1}{\Longrightarrow} X_{n} \xrightarrow{L^{r}} X \quad \Longrightarrow \quad \mathbb{E}\left[\left|X_{n}\right|^{r}\right] \rightarrow \mathbb{E}\left[|X|^{r}\right]
\end{aligned}
$$

- $X_{n} \Rightarrow$ a constant $c \quad \Longrightarrow \quad X_{n} \xrightarrow{p} c$.
- $X_{n} \xrightarrow{L^{1}} X \quad \Longrightarrow \quad \mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.
- $X_{n} \xrightarrow{\text { a.s. }} X \Longleftrightarrow \sup _{j \geq n}\left|X_{j}-X\right| \xrightarrow{p} 0$.
- $X_{n} \xrightarrow{p} X \quad \Longleftrightarrow \quad$ For every subsequence $X_{n}(m)$ there is a further subsequence $X_{n}\left(m_{k}\right)$ such that $X_{n}\left(m_{k}\right) \xrightarrow{\text { a.s. }} X$.

Convergence

 - Relationships- Question: If $X_{n} \Rightarrow X$ or $X_{n} \xrightarrow{p} X$ or $X_{n} \xrightarrow{\text { a.s. }} X$, does it imply $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$?

Convergence

- Relationships

- Question: If $X_{n} \Rightarrow X$ or $X_{n} \xrightarrow{p} X$ or $X_{n} \xrightarrow{\text { a.s. }} X$, does it imply $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose $X_{n} \xrightarrow{\text { a.s. }} X$, and $0 \leq X_{1} \leq X_{2} \leq \cdots$ a.s.. Then $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.

Convergence

- Relationships

- Question: If $X_{n} \Rightarrow X$ or $X_{n} \xrightarrow{p} X$ or $X_{n} \xrightarrow{\text { a.s. }} X$, does it imply $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose $X_{n} \xrightarrow{\text { a.s. }} X$, and $0 \leq X_{1} \leq X_{2} \leq \cdots$ a.s.. Then $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.

Fatou's Lemma

Suppose $X_{n} \geq Y$ a.s. for all n where $\mathbb{E}[|Y|]<\infty$. Then $\mathbb{E}\left[\liminf \operatorname{in}_{n \rightarrow \infty} X_{n}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]$. In particular, if $X_{n} \geq 0$ a.s. for all n, then the result holds.

Convergence

Dominated Convergence Theorem (DCT)

Suppose $X_{n} \xrightarrow{\text { a.s. }} X,\left|X_{n}\right| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|]<$ ∞. Then $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.

Convergence

Dominated Convergence Theorem (DCT)

Suppose $X_{n} \xrightarrow{\text { a.s. }} X,\left|X_{n}\right| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|]<$ ∞. Then $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.

- The DCT is still true if $\xrightarrow{\text { a.s. }}$ is replaced by \xrightarrow{p}.

Dominated Convergence Theorem (DCT)

Suppose $X_{n} \xrightarrow{\text { a.s. }} X,\left|X_{n}\right| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|]<$ ∞. Then $\mathbb{E}\left[X_{n}\right] \rightarrow \mathbb{E}[X]$.

- The DCT is still true if $\xrightarrow{\text { a.s. }}$ is replaced by \xrightarrow{p}.
- An even more general result: Suppose $X_{n} \xrightarrow{p} X,\left|X_{n}\right| \leq Y$ a.s. for all n, and $\mathbb{E}\left[|Y|^{r}\right]<\infty$ with $r \geq 1$. Then, $\mathbb{E}\left[\left|X_{n}\right|^{r}\right]<\infty, \mathbb{E}\left[|X|^{r}\right]<\infty$, and $X_{n} \xrightarrow{L^{r}} X$.

Convergence

- $X=Y$ a.s., if any one of the following holds:
- $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.

Convergence

- $X=Y$ a.s., if any one of the following holds:
- $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.
- If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{\text { a.s. }}(X, Y)^{\top}$.

Convergence

- $X=Y$ a.s., if any one of the following holds:
$-X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.
- If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{\text { a.s. }}(X, Y)^{\top}$.
$\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{\text { a.s. }} a X+b Y ; X_{n} Y_{n} \xrightarrow{\text { a.s. }} X Y$. (Due to CMT)
- $X=Y$ a.s., if any one of the following holds:
- $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.
- If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{\text { a.s. }}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{\text { a.s. }} a X+b Y ; X_{n} Y_{n} \xrightarrow{\text { a.s. }} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{p} X$ and $Y_{n} \xrightarrow{p} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{p}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{p} a X+b Y ; X_{n} Y_{n} \xrightarrow{p} X Y$. (Due to CMT)
- $X=Y$ a.s., if any one of the following holds:
- $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.
- If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{\text { a.s. }}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{\text { a.s. }} a X+b Y ; X_{n} Y_{n} \xrightarrow{\text { a.s. }} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{p} X$ and $Y_{n} \xrightarrow{p} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{p}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{p} a X+b Y ; X_{n} Y_{n} \xrightarrow{p} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{L^{r}} X$ and $Y_{n} \xrightarrow{L^{r}} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{L^{r}}(X, Y)^{\top}$.
$\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{L^{r}} a X+b Y$.
- $X=Y$ a.s., if any one of the following holds:
- $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.
- If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{\text { a.s. }}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{\text { a.s. }} a X+b Y ; X_{n} Y_{n} \xrightarrow{\text { a.s. }} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{p} X$ and $Y_{n} \xrightarrow{p} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{p}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{p} a X+b Y ; X_{n} Y_{n} \xrightarrow{p} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{L^{r}} X$ and $Y_{n} \xrightarrow{L^{r}} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{L^{r}}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{L^{r}} a X+b Y$.
- None of the above are true for convergence in distribution.
- $X=Y$ a.s., if any one of the following holds:
- $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} Y$;
- $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$;
- $X_{n} \xrightarrow{L^{r}} X$ and $X_{n} \xrightarrow{L^{r}} Y$.
- If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{\text { a.s. }}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{\text { a.s. }} a X+b Y ; X_{n} Y_{n} \xrightarrow{\text { a.s. }} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{p} X$ and $Y_{n} \xrightarrow{p} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{p}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{p} a X+b Y ; X_{n} Y_{n} \xrightarrow{p} X Y$. (Due to CMT)
- If $X_{n} \xrightarrow{L^{r}} X$ and $Y_{n} \xrightarrow{L^{r}} Y$, then $\left(X_{n}, Y_{n}\right)^{\top} \xrightarrow{L^{r}}(X, Y)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \xrightarrow{L^{r}} a X+b Y$.
- None of the above are true for convergence in distribution.
- If $X_{n} \Rightarrow X$ and $Y_{n} \Rightarrow$ constant c, then $\left(X_{n}, Y_{n}\right)^{\top} \Rightarrow(X, c)^{\top}$. $\Longrightarrow a X_{n}+b Y_{n} \Rightarrow a X+b c ; X_{n} Y_{n} \Rightarrow c X$. (Due to CMT; also known as Slutsky's theorem)

Convergence

- Continuous Mapping Theorem

Continuous Mapping Theorem (CMT)

Consider a sequence of $\operatorname{RVs}\left\{X_{n}: n \geq 1\right\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D)=0$. Then,

$$
\begin{aligned}
X_{n} \xrightarrow{\text { a.s. }} X & \Longrightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X) ; \\
X_{n} \xrightarrow{p} X & \Longrightarrow g\left(X_{n}\right) \xrightarrow{p} g(X) ; \\
X_{n} \Rightarrow X & \Longrightarrow g\left(X_{n}\right) \Rightarrow g(X) .
\end{aligned}
$$

Convergence

- Continuous Mapping Theorem

Continuous Mapping Theorem (CMT)

Consider a sequence of $\operatorname{RVs}\left\{X_{n}: n \geq 1\right\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D)=0$. Then,

$$
\begin{aligned}
X_{n} \xrightarrow{\text { a.s. }} X & \Longrightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X) ; \\
X_{n} \xrightarrow{p} X & \Longrightarrow g\left(X_{n}\right) \xrightarrow{p} g(X) ; \\
X_{n} \Rightarrow X & \Longrightarrow g\left(X_{n}\right) \Rightarrow g(X) .
\end{aligned}
$$

- CMT also holds for random vectors.

Convergence

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\left\{X_{n}: n \geq 1\right\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D)=0$. Then,

$$
\begin{aligned}
X_{n} \xrightarrow{\text { a.s. }} X & \Longrightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X) ; \\
X_{n} \xrightarrow{p} X & \Longrightarrow g\left(X_{n}\right) \xrightarrow{p} g(X) ; \\
X_{n} \Rightarrow X & \Longrightarrow g\left(X_{n}\right) \Rightarrow g(X) .
\end{aligned}
$$

- CMT also holds for random vectors.
- Caution: For convergence in L^{r} norm, stronger assumption of g than continuity is required to ensure $g\left(X_{n}\right) \xrightarrow{L^{r}} g(X)$.

(1) Probability Space

(2) Random Variables \& Distributions
(3) Expectations

4 Common Distributions
(5) Useful Inequalities
(6) Convergence
(7) Properties of a Random Sample

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;
(3) $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;
(3) $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
- If the distribution is $\mathcal{N}\left(\mu, \sigma^{2}\right)$, we further have:

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;
(3) $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
- If the distribution is $\mathcal{N}\left(\mu, \sigma^{2}\right)$, we further have:
(4) $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$, i.e., $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$;

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;
(3) $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
- If the distribution is $\mathcal{N}\left(\mu, \sigma^{2}\right)$, we further have:
(4) $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$, i.e., $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$;
(5) $\bar{X} \perp S^{2}$;

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;
(3) $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
- If the distribution is $\mathcal{N}\left(\mu, \sigma^{2}\right)$, we further have:
(4) $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$, i.e., $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$;
(5) $\bar{X} \perp S^{2}$;
(6) $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$;

Properties of a Random Sample

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}, i.e., X_{1}, \ldots, X_{n} are iid, and $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
- Define

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \text { and } S^{2}:=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- For a general distribution, the following is true:
(1) \bar{X} is an unbiased estimator of μ, i.e., $\mathbb{E}[\bar{X}]=\mu$;
(2) S^{2} is an unbiased estimator of σ^{2}, i.e, $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$;
(3) $\operatorname{Var}(\bar{X})=\sigma^{2} / n$.
- If the distribution is $\mathcal{N}\left(\mu, \sigma^{2}\right)$, we further have:
(4) $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$, i.e., $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$;
(5) $\bar{X} \perp S^{2}$;
(6) $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$;
(7) $\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}$.

Properties of a Random Sample

- For a general distribution, what can we say about the distribution of \bar{X} ?
- For a general distribution, what can we say about the distribution of \bar{X} ?
- $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- For a general distribution, what can we say about the distribution of \bar{X} ?
- $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_{n}, to explicitly indicate the effect of sample size n.

Properties of a Random Sample

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_{n}, to explicitly indicate the effect of sample size n.

Weak Law of Large Numbers (WLLN)

Suppose X_{1}, \ldots, X_{n} are iid with mean μ and variance $\sigma^{2}<$ $\infty .^{\dagger}$ Then, $\bar{X}_{n} \xrightarrow{p} \mu$.

[^15]
Properties of a Random Sample

- Law of Large Numbers

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $\operatorname{Var}(\bar{X})=\sigma^{2} / n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_{n}, to explicitly indicate the effect of sample size n.

Weak Law of Large Numbers (WLLN)

Suppose X_{1}, \ldots, X_{n} are iid with mean μ and variance $\sigma^{2}<$ $\infty .^{\dagger}$ Then, $\bar{X}_{n} \xrightarrow{p} \mu$.

Strong Law of Large Numbers (SLLN)

Suppose X_{1}, \ldots, X_{n} are iid with mean μ and variance $\sigma^{2}<$ $\infty .^{\dagger}$ Then, $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$.
${ }^{\dagger}$ Mutual independence can be weakened to pairwise independence; $\sigma^{2}<\infty$ can be weakened to $\mathbb{E}\left[\left|X_{i}\right|\right] \leq \infty$.

- Note that for normal distribution, $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$?

Properties of a Random Sample

- Note that for normal distribution, $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right]=0$ and $\operatorname{Var}\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right)=1$, regardless of the distribution and the value of n.

Properties of a Random Sample

- Note that for normal distribution, $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right]=0$ and $\operatorname{Var}\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right)=1$, regardless of the distribution and the value of n.

Central Limit Theorem (CLT)

Suppose X_{1}, \ldots, X_{n} are iid with mean μ and variance $\sigma^{2} \in$ $(0, \infty)$. Then,

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \Rightarrow \mathcal{N}(0,1) .
$$

[^0]: ${ }^{\dagger}$ It implies that \mathcal{F} is also closed under countable intersections.

[^1]: ${ }^{\dagger}$ It implies that \mathcal{F} is also closed under countable intersections.

[^2]: ${ }^{\dagger}$ It implies that \mathcal{F} is also closed under countable intersections.

[^3]: ${ }^{\dagger}$ It implies that \mathcal{F} is also closed under countable intersections.

[^4]: ${ }^{\dagger}$ It implies that \mathcal{F} is also closed under countable intersections.

[^5]: ${ }^{\dagger}$ The assumption of independence can be weakened to pairwise independence, with more difficult proof.

[^6]: ${ }^{\dagger}$ CAUTION: It means MORE than that X and Y both follow a normal distribution! More details latter.

[^7]: ${ }^{\dagger}$ See more detailed discussion in Lec 3.

[^8]: ${ }^{\dagger}$ See more detailed discussion in Lec 3.

[^9]: ${ }^{\dagger}$ See more detailed discussion in Lec 3.

[^10]: \dagger See more detailed discussion in Lec 3.

[^11]: ${ }^{\dagger}$ See more detailed discussion in Lec 3.

[^12]: ${ }^{\dagger}$ The multivariate normal distribution will be degenerate if \boldsymbol{B} does not have full row rank（ \boldsymbol{B} 不行满秩）．

[^13]: ${ }^{\dagger}$ The multivariate normal distribution will be degenerate if \boldsymbol{B} does not have full row rank（ \boldsymbol{B} 不行满秩）．

[^14]: ${ }^{\dagger}$ The multivariate normal distribution will be degenerate if \boldsymbol{B} does not have full row rank（ \boldsymbol{B} 不行满秩）．

[^15]: ${ }^{\dagger}$ Mutual independence can be weakened to pairwise independence; $\sigma^{2}<\infty$ can be weakened to $\mathbb{E}\left[\left|X_{i}\right|\right] \leq \infty$.

